{"title":"Multi-level Contextual Type Theory","authors":"Mathieu Boespflug, B. Pientka","doi":"10.4204/EPTCS.71.3","DOIUrl":null,"url":null,"abstract":"Contextual type theory distinguishes between bound variables and meta-variables to write potentially incomplete terms in the presence of binders. It has found good use as a framework for concise explanations of higher-order unification, characterize holes in proofs, and in developing a foundation for programming with higher-order abstract syntax, as embodied by the programming and reasoning environment Beluga. However, to reason about these applications, we need to introduce meta^2-variables to characterize the dependency on meta-variables and bound variables. In other words, we must go beyond a two-level system granting only bound variables and meta-variables. \nIn this paper we generalize contextual type theory to n levels for arbitrary n, so as to obtain a formal system offering bound variables, meta-variables and so on all the way to meta^n-variables. We obtain a uniform account by collapsing all these different kinds of variables into a single notion of variabe indexed by some level k. We give a decidable bi-directional type system which characterizes beta-eta-normal forms together with a generalized substitution operation.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.71.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Contextual type theory distinguishes between bound variables and meta-variables to write potentially incomplete terms in the presence of binders. It has found good use as a framework for concise explanations of higher-order unification, characterize holes in proofs, and in developing a foundation for programming with higher-order abstract syntax, as embodied by the programming and reasoning environment Beluga. However, to reason about these applications, we need to introduce meta^2-variables to characterize the dependency on meta-variables and bound variables. In other words, we must go beyond a two-level system granting only bound variables and meta-variables.
In this paper we generalize contextual type theory to n levels for arbitrary n, so as to obtain a formal system offering bound variables, meta-variables and so on all the way to meta^n-variables. We obtain a uniform account by collapsing all these different kinds of variables into a single notion of variabe indexed by some level k. We give a decidable bi-directional type system which characterizes beta-eta-normal forms together with a generalized substitution operation.