H. Ge, Keyi Sun, Liang Sun, Mingde Zhao, Chunguo Wu
{"title":"A Selective Ensemble Learning Framework for ECG-Based Heartbeat Classification with Imbalanced Data","authors":"H. Ge, Keyi Sun, Liang Sun, Mingde Zhao, Chunguo Wu","doi":"10.1109/BIBM.2018.8621523","DOIUrl":null,"url":null,"abstract":"ECG-based heartbeat classification is often accompanied with difficult feature extraction and imbalanced sampling data. In order to alleviate the bias in performance caused by imbalanced data, a Selective Ensemble Learning Framework based on sample Distribution and classifier Diversity (SELFrame-DD) is proposed for ECG-based heartbeat classification. In SELFrame-DD, an improved SMOTE algorithm is proposed to generate training sets by using a sample-distribution based resampling strategy, and the selective ensemble depends on the diversity of classifiers and the prediction accuracy of classifiers for minority classes. Besides, a multimodal ECG feature extraction is employed based on wavelet packet decomposition and 1-D convolutional neural network. Experimental studies on MIT-BIH arrhythmia database show that the proposed algorithm can achieve a high classification accuracy for imbalanced multi-category classification.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
ECG-based heartbeat classification is often accompanied with difficult feature extraction and imbalanced sampling data. In order to alleviate the bias in performance caused by imbalanced data, a Selective Ensemble Learning Framework based on sample Distribution and classifier Diversity (SELFrame-DD) is proposed for ECG-based heartbeat classification. In SELFrame-DD, an improved SMOTE algorithm is proposed to generate training sets by using a sample-distribution based resampling strategy, and the selective ensemble depends on the diversity of classifiers and the prediction accuracy of classifiers for minority classes. Besides, a multimodal ECG feature extraction is employed based on wavelet packet decomposition and 1-D convolutional neural network. Experimental studies on MIT-BIH arrhythmia database show that the proposed algorithm can achieve a high classification accuracy for imbalanced multi-category classification.