{"title":"A constrained formulation for compressive spectral image reconstruction using linear mixture models","authors":"Jorge Bacca, Héctor Vargas, H. Arguello","doi":"10.1109/CAMSAP.2017.8313122","DOIUrl":null,"url":null,"abstract":"Recent hyperspectral imaging systems are constructed on the idea of compressive sensing for efficient acquisition. However, the traditional reconstruction model in compressive hyperspectral imaging has a high computational complexity. In this work, compressive hyperspectral imaging and unmixing are combined for hyperspectral reconstruction in a low-complexity scheme. The compressed hyperspectral measurements are acquired with a single pixel spectrometer. The reconstruction model is represented in a space of lower dimension named linear mixture model. Hyperspectral reconstruction is then formulated as a nonnegative matrix factorization problem with respect to the endmembers and abundances, bypassing high-complexity tasks involving the hyperspectral data cube itself. The nonnegative matrix factorization problem is solved by combining an alternating least-squares based estimation strategy with the alternating direction method of multipliers. The estimated performance of the proposed scheme is illustrated in experiments conducted on a simulated acquisition in real data outperforming in 3dB the state-of-the-art reconstruction algorithms.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Recent hyperspectral imaging systems are constructed on the idea of compressive sensing for efficient acquisition. However, the traditional reconstruction model in compressive hyperspectral imaging has a high computational complexity. In this work, compressive hyperspectral imaging and unmixing are combined for hyperspectral reconstruction in a low-complexity scheme. The compressed hyperspectral measurements are acquired with a single pixel spectrometer. The reconstruction model is represented in a space of lower dimension named linear mixture model. Hyperspectral reconstruction is then formulated as a nonnegative matrix factorization problem with respect to the endmembers and abundances, bypassing high-complexity tasks involving the hyperspectral data cube itself. The nonnegative matrix factorization problem is solved by combining an alternating least-squares based estimation strategy with the alternating direction method of multipliers. The estimated performance of the proposed scheme is illustrated in experiments conducted on a simulated acquisition in real data outperforming in 3dB the state-of-the-art reconstruction algorithms.