On nearly Kählerian manifolds and quasi-Sasakian hypersurfaces axiom

G. Banaru
{"title":"On nearly Kählerian manifolds and quasi-Sasakian hypersurfaces axiom","authors":"G. Banaru","doi":"10.5922/0321-4796-2021-52-2","DOIUrl":null,"url":null,"abstract":"It is known that an almost contact metric structure is induced on an arbitrary hypersurface of an almost Hermitian manifold. The case when the almost Hermitian manifold is nearly Kählerian and the almost contact metric structure on its hypersurface is quasi-Sasakian is considered. It is proved that non-Kählerian nearly Kählerian manifolds (in particular, the six-dimensional sphere equipped with the canonical nearly Kählerian structure) do not satisfy to the quasi-Sasakian hypersurfaces axiom.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that an almost contact metric structure is induced on an arbitrary hypersurface of an almost Hermitian manifold. The case when the almost Hermitian manifold is nearly Kählerian and the almost contact metric structure on its hypersurface is quasi-Sasakian is considered. It is proved that non-Kählerian nearly Kählerian manifolds (in particular, the six-dimensional sphere equipped with the canonical nearly Kählerian structure) do not satisfy to the quasi-Sasakian hypersurfaces axiom.
近似Kählerian流形与拟sasaki超曲面公理
已知在几乎厄米流形的任意超表面上导出了一个几乎接触度量结构。考虑了近似厄米流形近似Kählerian且其超表面上的近似接触度量结构为拟sasakian的情况。证明了non-Kählerian近Kählerian流形(特别是具有正则近Kählerian结构的六维球面)不满足拟sasaki超曲面公理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信