Robust underwater target recognition using auditory cepstral coefficients

Yaozhen Wu, Yixin Yang, Can Tao, Feng Tian, Long Yang
{"title":"Robust underwater target recognition using auditory cepstral coefficients","authors":"Yaozhen Wu, Yixin Yang, Can Tao, Feng Tian, Long Yang","doi":"10.1109/OCEANS-TAIPEI.2014.6964335","DOIUrl":null,"url":null,"abstract":"Feature vector extraction is measured as major step in development of underwater target recognition. To improve robustness of the performance of feature vector extraction, we proposed a novel approach for robust underwater target recognition applying the auditory cepstral coefficients (ACC) based on auditory filter and cubic-log compression instead of Mel filter and logarithmic compression in Mel-frequency cepstral coefficients (MFCC). Our experimental results show that the ACC feature represents considerably better than conventional acoustic features, and the ACC feature is used for underwater target recognition system to yield promising recognition performance.","PeriodicalId":114739,"journal":{"name":"OCEANS 2014 - TAIPEI","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2014 - TAIPEI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-TAIPEI.2014.6964335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Feature vector extraction is measured as major step in development of underwater target recognition. To improve robustness of the performance of feature vector extraction, we proposed a novel approach for robust underwater target recognition applying the auditory cepstral coefficients (ACC) based on auditory filter and cubic-log compression instead of Mel filter and logarithmic compression in Mel-frequency cepstral coefficients (MFCC). Our experimental results show that the ACC feature represents considerably better than conventional acoustic features, and the ACC feature is used for underwater target recognition system to yield promising recognition performance.
基于听觉倒谱系数的鲁棒水下目标识别
特征向量提取是水下目标识别技术发展的重要一步。为了提高特征向量提取性能的鲁棒性,提出了一种基于听觉滤波和立方对数压缩的听觉倒谱系数(ACC)的鲁棒水下目标识别方法,取代了Mel滤波和对数压缩的Mel频率倒谱系数。实验结果表明,ACC特征的识别效果明显优于传统的声学特征,将ACC特征应用于水下目标识别系统具有良好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信