Discrete clusters formulation through the exploitation of optimized k-modes algorithm for hypotheses validation in social work research: the case of greek social workers working with refugees

Alexis Lazanas, Ilias Siachos, Dimitra-Dora Teloni, Sofia Dedotsi, Aristeidis G. Telonis
{"title":"Discrete clusters formulation through the exploitation of optimized k-modes algorithm for hypotheses validation in social work research: the case of greek social workers working with refugees","authors":"Alexis Lazanas, Ilias Siachos, Dimitra-Dora Teloni, Sofia Dedotsi, Aristeidis G. Telonis","doi":"10.54646/bijiam.2023.15","DOIUrl":null,"url":null,"abstract":"This article focuses on the results of self-funded quantitative research conducted by social workers working in the “refugee” crisis and social services in Greece (1). The research, among other findings, argues that front-line professionals possess specific characteristics regarding their working profile. Statistical methods in the research performed significance tests to validate the initial hypotheses concerning the correlation between dataset variables. On the contrary of this concept, in this work, we present an alternative approach for validating initial hypotheses through the exploitation of clustering algorithms. Toward that goal, we evaluated several frequently used clustering algorithms regarding their efficiency in feature selection processes, and we finally propose a modified k-Modes algorithm for efficient feature subset selection.","PeriodicalId":231453,"journal":{"name":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijiam.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on the results of self-funded quantitative research conducted by social workers working in the “refugee” crisis and social services in Greece (1). The research, among other findings, argues that front-line professionals possess specific characteristics regarding their working profile. Statistical methods in the research performed significance tests to validate the initial hypotheses concerning the correlation between dataset variables. On the contrary of this concept, in this work, we present an alternative approach for validating initial hypotheses through the exploitation of clustering algorithms. Toward that goal, we evaluated several frequently used clustering algorithms regarding their efficiency in feature selection processes, and we finally propose a modified k-Modes algorithm for efficient feature subset selection.
离散聚类公式通过利用优化的k模式算法在社会工作研究中进行假设验证:希腊社会工作者与难民一起工作的案例
本文关注的是由从事希腊“难民”危机和社会服务工作的社会工作者进行的自费定量研究的结果(1)。该研究的其他发现之一是,认为一线专业人员在其工作概况方面具有特定的特征。研究中的统计方法进行了显著性检验,以验证关于数据集变量之间相关性的初始假设。与这个概念相反,在这项工作中,我们提出了一种通过利用聚类算法验证初始假设的替代方法。为了实现这一目标,我们评估了几种常用的聚类算法在特征选择过程中的效率,并最终提出了一种改进的k-Modes算法,用于有效的特征子集选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信