GGF

Li Wu, Fei Li, Youhua Wu, Tao Zheng
{"title":"GGF","authors":"Li Wu, Fei Li, Youhua Wu, Tao Zheng","doi":"10.1145/3387904.3389252","DOIUrl":null,"url":null,"abstract":"Syntax errors combined with obscure error messages generated by compilers usually annoy programmers and cause them to waste a lot of time on locating errors. The existing models do not utilize the structure in the code and just treat the code as token sequences. It causes low accuracy and poor performance on this task. In this paper, we propose a novel deep supervised learning model, called Graph-based Grammar Fix(GGF), to help programmers locate and fix the syntax errors. GGF treats the code as a mixture of the token sequences and graphs. The graphs build upon the Abstract Syntax Tree (AST) structure information. GGF encodes an erroneous code with its sub-AST structure, predicts the error position using pointer network and generates the right token. We utilized the DeepFix dataset which contains 46500 correct C programs and 6975 programs with errors written by students taking an introductory programming course. GGF is trained with the correct programs from the DeepFix dataset with intentionally injected syntax errors. After training, GGF could fix 4054 (58.12%) of the erroneous code, while the existing state of the art tool DeepFix fixes 1365 (19.57%) of the erroneous code.","PeriodicalId":433703,"journal":{"name":"Proceedings of the 28th International Conference on Program Comprehension","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Program Comprehension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387904.3389252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Syntax errors combined with obscure error messages generated by compilers usually annoy programmers and cause them to waste a lot of time on locating errors. The existing models do not utilize the structure in the code and just treat the code as token sequences. It causes low accuracy and poor performance on this task. In this paper, we propose a novel deep supervised learning model, called Graph-based Grammar Fix(GGF), to help programmers locate and fix the syntax errors. GGF treats the code as a mixture of the token sequences and graphs. The graphs build upon the Abstract Syntax Tree (AST) structure information. GGF encodes an erroneous code with its sub-AST structure, predicts the error position using pointer network and generates the right token. We utilized the DeepFix dataset which contains 46500 correct C programs and 6975 programs with errors written by students taking an introductory programming course. GGF is trained with the correct programs from the DeepFix dataset with intentionally injected syntax errors. After training, GGF could fix 4054 (58.12%) of the erroneous code, while the existing state of the art tool DeepFix fixes 1365 (19.57%) of the erroneous code.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信