Demo: Scaling on the Edge – A Benchmarking Suite for Human-in-the-Loop Applicationss

Manuel Osvaldo Jesus Olguin Muñoz, Junjue Wang, M. Satyanarayanan, J. Gross
{"title":"Demo: Scaling on the Edge – A Benchmarking Suite for Human-in-the-Loop Applicationss","authors":"Manuel Osvaldo Jesus Olguin Muñoz, Junjue Wang, M. Satyanarayanan, J. Gross","doi":"10.1109/SEC.2018.00031","DOIUrl":null,"url":null,"abstract":"Previous works on cloudlets, one of the earliest incarnation of edge computing, enable small data-centers at the edge of the Internet. Many futuristic applications become viable with these clusters that are only one wireless hop away. One of the most promising genres of these emerging applications is human-in-the-loop applications such as wearable cognitive assistance. In these applications, sensor data, for example video and audio, are continuously streamed to a cloudlet, where they are analyzed in realtime in order to assist users to complete a particular task. Benchmarking infrastructures for these human-in-the-loop applications is challenging - the main issue arises from the involvement of humans. Applications' execution path and resource utilization vary among users. In this demo we present a methodology and benchmarking suite capable of tackling this challenges through the use of prerecorded sensory input traces, which allows for efficient scaling of benchmark scenarios.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Previous works on cloudlets, one of the earliest incarnation of edge computing, enable small data-centers at the edge of the Internet. Many futuristic applications become viable with these clusters that are only one wireless hop away. One of the most promising genres of these emerging applications is human-in-the-loop applications such as wearable cognitive assistance. In these applications, sensor data, for example video and audio, are continuously streamed to a cloudlet, where they are analyzed in realtime in order to assist users to complete a particular task. Benchmarking infrastructures for these human-in-the-loop applications is challenging - the main issue arises from the involvement of humans. Applications' execution path and resource utilization vary among users. In this demo we present a methodology and benchmarking suite capable of tackling this challenges through the use of prerecorded sensory input traces, which allows for efficient scaling of benchmark scenarios.
演示:在边缘上扩展-一个用于人在循环应用程序的基准测试套件
cloudlets是边缘计算最早的化身之一,以前在cloudlets上的工作使互联网边缘的小型数据中心成为可能。许多未来的应用程序都可以通过这些只有一个无线跳的集群来实现。这些新兴应用中最有前途的类型之一是人在环应用,如可穿戴认知辅助。在这些应用中,传感器数据(例如视频和音频)连续传输到cloudlet,在那里它们被实时分析,以帮助用户完成特定的任务。为这些人在循环中的应用程序对基础设施进行基准测试是具有挑战性的——主要问题来自于人的参与。应用程序的执行路径和资源利用率因用户而异。在这个演示中,我们提出了一种方法和基准测试套件,能够通过使用预先录制的感官输入轨迹来解决这一挑战,这允许有效地扩展基准测试场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信