Incremental Matrix Co-factorization for Recommender Systems with Implicit Feedback

S. Anyosa, João Vinagre, A. Jorge
{"title":"Incremental Matrix Co-factorization for Recommender Systems with Implicit Feedback","authors":"S. Anyosa, João Vinagre, A. Jorge","doi":"10.1145/3184558.3191585","DOIUrl":null,"url":null,"abstract":"Recommender systems try to predict which items a user will prefer. Traditional models for recommendation only take into account the user-item interaction, usually expressed by explicit ratings. However, in these days, web services continuously generate auxiliary data from users and items that can be incorporated into the recommendation model to improve recommendations. In this work, we propose an incremental Matrix Co-factorization model with implicit user feedback, considering a real-world data-stream scenario. This model can be seen as an extension of the conventional Matrix Factorization that includes additional dimensions to be decomposed in the common latent factor space. We test our proposal against a baseline algorithm that relies exclusively on interaction data, using prequential evaluation. Our experimental results show a significant improvement in the accuracy of recommendations, after incorporating an additional dimension in three music domain datasets.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Recommender systems try to predict which items a user will prefer. Traditional models for recommendation only take into account the user-item interaction, usually expressed by explicit ratings. However, in these days, web services continuously generate auxiliary data from users and items that can be incorporated into the recommendation model to improve recommendations. In this work, we propose an incremental Matrix Co-factorization model with implicit user feedback, considering a real-world data-stream scenario. This model can be seen as an extension of the conventional Matrix Factorization that includes additional dimensions to be decomposed in the common latent factor space. We test our proposal against a baseline algorithm that relies exclusively on interaction data, using prequential evaluation. Our experimental results show a significant improvement in the accuracy of recommendations, after incorporating an additional dimension in three music domain datasets.
隐式反馈推荐系统的增量矩阵协因式分解
推荐系统试图预测用户会喜欢哪些产品。传统的推荐模型只考虑用户与物品的交互作用,通常用明确的评分来表示。然而,如今,web服务不断地从用户和项目中生成辅助数据,这些数据可以合并到推荐模型中以改进推荐。在这项工作中,我们提出了一个具有隐式用户反馈的增量矩阵协分解模型,考虑到现实世界的数据流场景。该模型可以看作是传统矩阵分解的扩展,它包含了在公共潜在因子空间中分解的额外维度。我们使用优先评估方法,针对仅依赖于交互数据的基线算法测试我们的建议。我们的实验结果表明,在三个音乐领域数据集中加入额外的维度后,推荐的准确性有了显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信