Discriminating irrigation and rainfall with proximal gamma-ray spectroscopy

A. Serafini, M. Albéri, Enrico Chiarelli, M. Montuschi, Kassandra Giulia Cristina Raptis, V. Strati, F. Mantovani
{"title":"Discriminating irrigation and rainfall with proximal gamma-ray spectroscopy","authors":"A. Serafini, M. Albéri, Enrico Chiarelli, M. Montuschi, Kassandra Giulia Cristina Raptis, V. Strati, F. Mantovani","doi":"10.1109/MetroAgriFor50201.2020.9277556","DOIUrl":null,"url":null,"abstract":"We present a study of the performances of a proximal gamma-ray ground station based on a 7 months continuous acquisition, including 42 rain episodes and 16 irrigations. In particular, we demonstrate the reliability of the station in discriminating irrigations and rains through their peculiar gamma signals fingerprint. This proof of concept experiment shows that proximal gamma-ray spectroscopy can potentially fill the spatial gap between punctual and satellite soil water content measurements, as well as provide an unbiased approach for producing comprehensive irrigations maps.","PeriodicalId":124961,"journal":{"name":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor50201.2020.9277556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a study of the performances of a proximal gamma-ray ground station based on a 7 months continuous acquisition, including 42 rain episodes and 16 irrigations. In particular, we demonstrate the reliability of the station in discriminating irrigations and rains through their peculiar gamma signals fingerprint. This proof of concept experiment shows that proximal gamma-ray spectroscopy can potentially fill the spatial gap between punctual and satellite soil water content measurements, as well as provide an unbiased approach for producing comprehensive irrigations maps.
用近端伽玛射线能谱鉴别灌溉和降雨
我们提出了一项基于7个月连续采集的近端伽马射线地面站的性能研究,包括42次降雨和16次灌溉。特别地,我们证明了该站通过其特有的伽马信号指纹识别灌溉和降雨的可靠性。这个概念验证实验表明,近端伽玛射线光谱可以潜在地填补准时和卫星土壤含水量测量之间的空间差距,并为制作综合灌溉地图提供一种无偏的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信