Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning

Wieslaw Paja, K. Pancerz, Barbara Pekala, J. Sarzynski
{"title":"Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning","authors":"Wieslaw Paja, K. Pancerz, Barbara Pekala, J. Sarzynski","doi":"10.1109/FUZZ45933.2021.9494515","DOIUrl":null,"url":null,"abstract":"In the paper, we show how the importance of individual ranges of values of attributes describing cases can be determined using the attribute fuzzification process. The importance is determined on the basis of classification capabilities. The described approach is based mainly on fuzzy set theory and the rough set based discretization method. Moreover, an experimental study of the computer-aided classification task is presented.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"237 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the paper, we show how the importance of individual ranges of values of attributes describing cases can be determined using the attribute fuzzification process. The importance is determined on the basis of classification capabilities. The described approach is based mainly on fuzzy set theory and the rough set based discretization method. Moreover, an experimental study of the computer-aided classification task is presented.
模糊逻辑在机器学习中属性范围评价与选择中的应用
在本文中,我们展示了如何使用属性模糊化过程来确定描述案例的属性值的各个范围的重要性。重要性是根据分类能力来确定的。该方法主要基于模糊集理论和基于粗糙集的离散化方法。此外,还对计算机辅助分类任务进行了实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信