An Effective Foreground Detection Approach Using a Block-Based Background Modeling

O. Elharrouss, Driss Moujahid, Soukaina Elidrissi Elkaitouni, H. Tairi
{"title":"An Effective Foreground Detection Approach Using a Block-Based Background Modeling","authors":"O. Elharrouss, Driss Moujahid, Soukaina Elidrissi Elkaitouni, H. Tairi","doi":"10.1109/CGIV.2016.44","DOIUrl":null,"url":null,"abstract":"The moving objects detection is considered as an important factor for many video surveillance applications. To assure a best detection a background model should be generated. This paper proposes a background modeling approach. To generate this model, we use both pixel-based and block-based processes to classify background pixels from those belong to the foreground. After that, to minimize the noise in the results of the background subtraction the structure-texture decomposition is applied on the absolute difference image. Just the structure component which contains the homogeneous parts of the image is used in the segmentation. The binary motion detection mask computation is made using a selected threshold. The experimental results demonstrate that our approach is effective and accurate for moving objects detection.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The moving objects detection is considered as an important factor for many video surveillance applications. To assure a best detection a background model should be generated. This paper proposes a background modeling approach. To generate this model, we use both pixel-based and block-based processes to classify background pixels from those belong to the foreground. After that, to minimize the noise in the results of the background subtraction the structure-texture decomposition is applied on the absolute difference image. Just the structure component which contains the homogeneous parts of the image is used in the segmentation. The binary motion detection mask computation is made using a selected threshold. The experimental results demonstrate that our approach is effective and accurate for moving objects detection.
一种基于块背景建模的前景检测方法
在许多视频监控应用中,运动目标的检测被认为是一个重要的因素。为了保证最好的检测,需要生成一个背景模型。本文提出了一种背景建模方法。为了生成该模型,我们使用基于像素和基于块的过程将背景像素与属于前景的像素进行分类。然后,对绝对差图像进行结构-纹理分解,使背景相减结果中的噪声最小化。只使用包含图像同质部分的结构分量进行分割。使用选定的阈值进行二进制运动检测掩码计算。实验结果表明,该方法对运动目标的检测是有效和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信