Model-based reinforcement learning approach for deformable linear object manipulation

Haifeng Han, G. Paul, Takamitsu Matsubara
{"title":"Model-based reinforcement learning approach for deformable linear object manipulation","authors":"Haifeng Han, G. Paul, Takamitsu Matsubara","doi":"10.1109/COASE.2017.8256194","DOIUrl":null,"url":null,"abstract":"Deformable Linear Object (DLO) manipulation has wide application in industry and in daily life. Conventionally, it is difficult for a robot to manipulate a DLO to achieve the target configuration due to the absence of the universal model that specifies the DLO regardless of the material and environment. Since the state variable of a DLO can be very high dimensional, identifying such a model may require a huge number of samples. Thus, model-based planning of DLO manipulation would be impractical and unreasonable. In this paper, we explore another approach based on reinforcement learning. To this end, our approach is to apply a sample-efficient model-based reinforcement learning method, so-called PILCO [1], to resolve the high dimensional planning problem of DLO manipulation with a reasonable number of samples. To investigate the effectiveness of our approach, we developed an experimental setup with a dual-arm industrial robot and multiple sensors. Then, we conducted experiments to show that our approach is efficient by performing a DLO manipulation task.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Deformable Linear Object (DLO) manipulation has wide application in industry and in daily life. Conventionally, it is difficult for a robot to manipulate a DLO to achieve the target configuration due to the absence of the universal model that specifies the DLO regardless of the material and environment. Since the state variable of a DLO can be very high dimensional, identifying such a model may require a huge number of samples. Thus, model-based planning of DLO manipulation would be impractical and unreasonable. In this paper, we explore another approach based on reinforcement learning. To this end, our approach is to apply a sample-efficient model-based reinforcement learning method, so-called PILCO [1], to resolve the high dimensional planning problem of DLO manipulation with a reasonable number of samples. To investigate the effectiveness of our approach, we developed an experimental setup with a dual-arm industrial robot and multiple sensors. Then, we conducted experiments to show that our approach is efficient by performing a DLO manipulation task.
基于模型的可变形线性对象处理强化学习方法
可变形线性对象(DLO)操作在工业和日常生活中有着广泛的应用。通常情况下,由于不考虑材料和环境,缺乏指定DLO的通用模型,机器人很难操纵DLO实现目标配置。由于DLO的状态变量可能是非常高维的,因此识别这样的模型可能需要大量的样本。因此,基于模型的DLO操作规划是不切实际和不合理的。在本文中,我们探索了另一种基于强化学习的方法。为此,我们的方法是采用一种基于样本效率模型的强化学习方法,即所谓的PILCO[1],以合理的样本数量来解决DLO操作的高维规划问题。为了研究我们方法的有效性,我们开发了一个带有双臂工业机器人和多个传感器的实验装置。然后,我们进行了实验,通过执行DLO操作任务来证明我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信