VRGrid: Efficient Transformation of 2D Data into Pixel Grid Layout

Adrien Halnaut, R. Giot, Romain Bourqui, D. Auber
{"title":"VRGrid: Efficient Transformation of 2D Data into Pixel Grid Layout","authors":"Adrien Halnaut, R. Giot, Romain Bourqui, D. Auber","doi":"10.1109/IV56949.2022.00012","DOIUrl":null,"url":null,"abstract":"Projecting a set of $n$ points on a grid of size $\\sqrt{n}\\times\\sqrt{n}$ provides the best possible information density in two dimensions without overlap. We leverage the Voronoi Relaxation method to devise a novel and versatile post-processing algorithm called VRGrid: it enables the arrangement of any 2D data on a grid while preserving its initial positions. We apply VRGrid to generate compact and overlap-free visualization of popular and overlap-prone projection methods (e.g., t-SNE). We prove that our method complexity is $O(\\sqrt{n}.i.n.log(n))$, with i a determined maximum number of iterations and $n$ the input dataset size. It is thus usable for visualization of several thousands of points. We evaluate VRGrid's efficiency with several metrics: distance preservation (DP), neighborhood preservation (NP), pairwise relative positioning preservation (RPP) and global positioning preservation (GPP). We benchmark VRGrid against two state-of-the-art methods: Self-Sorting Maps (SSM) and Distance-preserving Grid (DGrid). VRGrid outperforms these two methods, given enough iterations, on DP, RPP and GPP which we identify to be the key metrics to preserve the positions of the original set of points.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Projecting a set of $n$ points on a grid of size $\sqrt{n}\times\sqrt{n}$ provides the best possible information density in two dimensions without overlap. We leverage the Voronoi Relaxation method to devise a novel and versatile post-processing algorithm called VRGrid: it enables the arrangement of any 2D data on a grid while preserving its initial positions. We apply VRGrid to generate compact and overlap-free visualization of popular and overlap-prone projection methods (e.g., t-SNE). We prove that our method complexity is $O(\sqrt{n}.i.n.log(n))$, with i a determined maximum number of iterations and $n$ the input dataset size. It is thus usable for visualization of several thousands of points. We evaluate VRGrid's efficiency with several metrics: distance preservation (DP), neighborhood preservation (NP), pairwise relative positioning preservation (RPP) and global positioning preservation (GPP). We benchmark VRGrid against two state-of-the-art methods: Self-Sorting Maps (SSM) and Distance-preserving Grid (DGrid). VRGrid outperforms these two methods, given enough iterations, on DP, RPP and GPP which we identify to be the key metrics to preserve the positions of the original set of points.
VRGrid: 2D数据到像素网格布局的有效转换
在一个大小为$\sqrt{n}\乘以\sqrt{n}$的网格上投影一组$n$点,可以在没有重叠的二维空间中提供最佳的信息密度。我们利用Voronoi松弛方法设计了一种新颖而通用的后处理算法,称为VRGrid:它可以在网格上排列任何2D数据,同时保留其初始位置。我们应用VRGrid来生成流行的和容易重叠的投影方法(例如,t-SNE)的紧凑和无重叠的可视化。我们证明了我们的方法复杂度是$O(\sqrt{n}.i.n log(n))$,其中i是确定的最大迭代次数,$n$是输入数据集的大小。因此,它可用于数千个点的可视化。我们用距离保存(DP)、邻域保存(NP)、成对相对定位保存(RPP)和全局定位保存(GPP)几个指标来评估VRGrid的效率。我们将VRGrid与两种最先进的方法进行基准测试:自排序地图(SSM)和距离保持网格(DGrid)。在给定足够迭代的情况下,VRGrid在DP、RPP和GPP上优于这两种方法,我们认为这是保持原始点集位置的关键指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信