Automatic punctuation generation for speech

Wenzhu Shen, Roger Peng Yu, F. Seide, Ji Wu
{"title":"Automatic punctuation generation for speech","authors":"Wenzhu Shen, Roger Peng Yu, F. Seide, Ji Wu","doi":"10.1109/ASRU.2009.5373365","DOIUrl":null,"url":null,"abstract":"Automatic generation of punctuation is an essential feature for many speech-to-text transcription tasks. This paper describes a Maximum A-Posteriori (MAP) approach for inserting punctuation marks into raw word sequences obtained from Automatic Speech Recognition (ASR). The system consists of an “acoustic model” (AM) for prosodic features (actually pause duration) and a “language model” (LM) for text-only features. The LM combines three components: an MLP-based trigger-word model and a forward and a backward trigram punctuation predictor. The separation into acoustic and language model allows to learn these models on different corpora, especially allowing the LM to be trained on large amounts of data (text) for which no acoustic information is available. We find that the trigger-word LM is very useful, and further improvement can be achieved when combining both prosodic and lexical information. We achieve an F-measure of 81.0% and 56.5% for voicemails and podcasts, respectively, on reference transcripts, and 69.6% for voicemails on ASR transcripts.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Automatic generation of punctuation is an essential feature for many speech-to-text transcription tasks. This paper describes a Maximum A-Posteriori (MAP) approach for inserting punctuation marks into raw word sequences obtained from Automatic Speech Recognition (ASR). The system consists of an “acoustic model” (AM) for prosodic features (actually pause duration) and a “language model” (LM) for text-only features. The LM combines three components: an MLP-based trigger-word model and a forward and a backward trigram punctuation predictor. The separation into acoustic and language model allows to learn these models on different corpora, especially allowing the LM to be trained on large amounts of data (text) for which no acoustic information is available. We find that the trigger-word LM is very useful, and further improvement can be achieved when combining both prosodic and lexical information. We achieve an F-measure of 81.0% and 56.5% for voicemails and podcasts, respectively, on reference transcripts, and 69.6% for voicemails on ASR transcripts.
语音自动标点生成
自动生成标点符号是许多语音到文本转录任务的基本功能。本文描述了一种将标点符号插入到自动语音识别(ASR)获得的原始单词序列中的最大后验(MAP)方法。该系统由韵律特征(实际上是暂停时间)的“声学模型”(AM)和纯文本特征的“语言模型”(LM)组成。LM结合了三个组件:一个基于mlp的触发词模型和一个前向和后向三重标点预测器。声学和语言模型的分离允许在不同的语料库上学习这些模型,特别是允许LM在没有声学信息的大量数据(文本)上进行训练。我们发现触发词LM非常有用,并且当韵律和词汇信息结合在一起时可以进一步改进。语音邮件和播客在参考文本上的f值分别为81.0%和56.5%,语音邮件在ASR文本上的f值分别为69.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信