A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic

Giampaolo Bovenzi, Francesco Cerasuolo, Antonio Montieri, Alfredo Nascita, V. Persico, A. Pescapé
{"title":"A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic","authors":"Giampaolo Bovenzi, Francesco Cerasuolo, Antonio Montieri, Alfredo Nascita, V. Persico, A. Pescapé","doi":"10.1109/ISCC55528.2022.9912986","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of mobile-app services, malicious software is increasing as well. Accordingly, the interest of the scientific community in Machine and Deep Learning solutions for detecting and classifying malware traffic is growing. In this work, we provide a fair assessment of the performance of a number of data-driven strategies to detect and classify Android malware traffic. Three models are taken into account (Decision Tree, Random Forest, and 1-D Convolutional Neural Network) considering both flat (i.e. non-hierarchical) and hierarchical approaches. The experimental analysis performed using a state-of-art dataset (CIC-AAGM2017) reports that Random Forest exhibits the best performance in a flat setup, while moving to a hierarchical approach could cause significant variation in precision and recall. Such results push for further investigating advanced hierarchical setups and learning schemes.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With the increasing popularity of mobile-app services, malicious software is increasing as well. Accordingly, the interest of the scientific community in Machine and Deep Learning solutions for detecting and classifying malware traffic is growing. In this work, we provide a fair assessment of the performance of a number of data-driven strategies to detect and classify Android malware traffic. Three models are taken into account (Decision Tree, Random Forest, and 1-D Convolutional Neural Network) considering both flat (i.e. non-hierarchical) and hierarchical approaches. The experimental analysis performed using a state-of-art dataset (CIC-AAGM2017) reports that Random Forest exhibits the best performance in a flat setup, while moving to a hierarchical approach could cause significant variation in precision and recall. Such results push for further investigating advanced hierarchical setups and learning schemes.
Android恶意软件流量检测与分类的机器与深度学习模型比较
随着移动应用程序服务的日益普及,恶意软件也在不断增加。因此,科学界对检测和分类恶意软件流量的机器和深度学习解决方案的兴趣正在增长。在这项工作中,我们对一些数据驱动策略的性能进行了公平的评估,以检测和分类Android恶意软件流量。考虑到平面(即非分层)和分层方法,考虑了三种模型(决策树,随机森林和一维卷积神经网络)。使用最先进的数据集(CIC-AAGM2017)进行的实验分析报告显示,随机森林在平面设置中表现出最佳性能,而转向分层方法可能会导致精度和召回率的显着变化。这样的结果推动了进一步研究先进的分层设置和学习方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信