Student Clustering Based on Learning Behavior Data in the Intelligent Tutoring System

Ines Šarić-Grgić, Ani Grubišić, Ljiljana Šerić, T. Robinson
{"title":"Student Clustering Based on Learning Behavior Data in the Intelligent Tutoring System","authors":"Ines Šarić-Grgić, Ani Grubišić, Ljiljana Šerić, T. Robinson","doi":"10.4018/ijdet.2020040105","DOIUrl":null,"url":null,"abstract":"The idea of clustering students according to their online learning behavior has the potential of providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher. WiththeaimofidentifyingstudentgroupswhowouldbenefitfromthesameinterventioninACwareTutor, this researchexaminedonline learningbehaviorusing8 trackingvariables: the total numberofcontentpagesseeninthelearningprocess;thetotalnumberofconcepts;thetotalonline score;thetotaltimespentonline;thetotalnumberoflogins;thestereotypeaftertheinitialtest,the finalstereotype,andthemeanstereotypevariability.Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam.Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters. KEywoRDS Blended Learning, Clustering, Decision Tree, Educational Data Mining, Flipped Classroom, Intelligent Tutoring System, Online Learning Behavior, Principal Component Analysis","PeriodicalId":298910,"journal":{"name":"Int. J. Distance Educ. Technol.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distance Educ. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdet.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The idea of clustering students according to their online learning behavior has the potential of providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher. WiththeaimofidentifyingstudentgroupswhowouldbenefitfromthesameinterventioninACwareTutor, this researchexaminedonline learningbehaviorusing8 trackingvariables: the total numberofcontentpagesseeninthelearningprocess;thetotalnumberofconcepts;thetotalonline score;thetotaltimespentonline;thetotalnumberoflogins;thestereotypeaftertheinitialtest,the finalstereotype,andthemeanstereotypevariability.Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam.Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters. KEywoRDS Blended Learning, Clustering, Decision Tree, Educational Data Mining, Flipped Classroom, Intelligent Tutoring System, Online Learning Behavior, Principal Component Analysis
智能辅导系统中基于学习行为数据的学生聚类
根据学生的在线学习行为将他们聚集在一起的想法具有providingmoreadaptivescaffoldingbytheintelligenttutoringsystemitselforbyahumanteacher的潜力。目标的识别组织学生给将从相同的受益干预在ACware导师,研究在线学习检查行为使用8跟踪变量:总内容的页面数量见过学习过程;的总数量概念;总在线的分数;总花时间的在线;的总数量登录;刻板印象初始测试后,最终的刻板印象,意味着原型可变性。Thepreviousmeasureswereusedinafour-step analysisthatconsistedofdatapreprocessing,dimensionalityreduction,theclustering,andtheanalysis ofaposttestperformanceonacontentproficiencyexam。Theresultswerealsousedtoconstructthe decisiontreeinordertogetahuman-readabledescriptionofstudentclusters。关键词:混合学习,聚类,决策树,教育数据挖掘,翻转课堂,智能辅导系统,在线学习行为,主成分分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信