Accuracy-aware aquatic diffusion process profiling using robotic sensor networks

Yu Wang, R. Tan, G. Xing, Jianxun Wang, Xiaobo Tan
{"title":"Accuracy-aware aquatic diffusion process profiling using robotic sensor networks","authors":"Yu Wang, R. Tan, G. Xing, Jianxun Wang, Xiaobo Tan","doi":"10.1145/2185677.2185742","DOIUrl":null,"url":null,"abstract":"Water resources and aquatic ecosystems are facing increasing threats from climate change, improper waste disposal, and oil spill incidents. It is of great interest to deploy mobile sensors to detect and monitor certain diffusion processes (e.g., chemical pollutants) that are harmful to aquatic en-vironments. In this paper, we propose an accuracy-aware diffusion process profiling approach using smart aquatic mobile sensors such as robotic fish. In our approach, the robotic sensors collaboratively profile the characteristics of a diffusion process including source location, discharged substance amount, and its evolution over time. In particular, the robotic sensors reposition themselves to progressively improve the profiling accuracy. We formulate a novel movement scheduling problem that aims to maximize the profiling accuracy subject to limited sensor mobility and energy budget. We develop an efficient greedy algorithm and a more complex near-optimal radial algorithm to solve the problem. We conduct extensive simulations based on real data traces of robotic fish movement and wireless communication. The results show that our approach can accurately profile dynamic diffusion processes under tight energy budgets. More-over, a preliminary evaluation based on the implementation on TelosB motes validates the feasibility of deploying our movement scheduling algorithms on mote-class robotic sensor platforms.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Water resources and aquatic ecosystems are facing increasing threats from climate change, improper waste disposal, and oil spill incidents. It is of great interest to deploy mobile sensors to detect and monitor certain diffusion processes (e.g., chemical pollutants) that are harmful to aquatic en-vironments. In this paper, we propose an accuracy-aware diffusion process profiling approach using smart aquatic mobile sensors such as robotic fish. In our approach, the robotic sensors collaboratively profile the characteristics of a diffusion process including source location, discharged substance amount, and its evolution over time. In particular, the robotic sensors reposition themselves to progressively improve the profiling accuracy. We formulate a novel movement scheduling problem that aims to maximize the profiling accuracy subject to limited sensor mobility and energy budget. We develop an efficient greedy algorithm and a more complex near-optimal radial algorithm to solve the problem. We conduct extensive simulations based on real data traces of robotic fish movement and wireless communication. The results show that our approach can accurately profile dynamic diffusion processes under tight energy budgets. More-over, a preliminary evaluation based on the implementation on TelosB motes validates the feasibility of deploying our movement scheduling algorithms on mote-class robotic sensor platforms.
使用机器人传感器网络的精度感知水生扩散过程分析
水资源和水生生态系统正面临着气候变化、不当废物处理和石油泄漏事件日益严重的威胁。部署移动传感器来探测和监测对水生环境有害的某些扩散过程(例如化学污染物)是非常有趣的。在本文中,我们提出了一种使用智能水生移动传感器(如机器鱼)的精度感知扩散过程分析方法。在我们的方法中,机器人传感器协同描绘扩散过程的特征,包括源位置、排放的物质量及其随时间的演变。特别是,机器人传感器自身重新定位,逐步提高轮廓精度。我们提出了一种新的运动调度问题,其目的是在有限的传感器移动性和能量预算的情况下最大化轮廓精度。我们提出了一种高效的贪心算法和一种更复杂的近最优径向算法来解决这个问题。我们根据机器鱼运动和无线通信的真实数据痕迹进行了广泛的模拟。结果表明,我们的方法可以准确地描述在紧张的能量预算下的动态扩散过程。此外,基于TelosB motes上实现的初步评估验证了在mote级机器人传感器平台上部署我们的运动调度算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信