State of the Art in Nonlinear Dynamical System Identification using Artificial Neural Networks

Nenad Todorovic, Petr Klan
{"title":"State of the Art in Nonlinear Dynamical System Identification using Artificial Neural Networks","authors":"Nenad Todorovic, Petr Klan","doi":"10.1109/NEUREL.2006.341187","DOIUrl":null,"url":null,"abstract":"This paper covers the state of the art in nonlinear dynamical system identification using artificial neural networks (ANN). The main approaches in the last two decades are presented in unified framework. ANN has unique characteristics, which enable them to model nonlinear dynamical systems. The main problems with the choice of ANN model structure are considered and commonly used identification schemes are proposed. A procedure for derivation of parameter estimation law using Lyapunov synthesis approach, which guarantees stability and convergence of the overall identification scheme, is presented","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"46 Suppl 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper covers the state of the art in nonlinear dynamical system identification using artificial neural networks (ANN). The main approaches in the last two decades are presented in unified framework. ANN has unique characteristics, which enable them to model nonlinear dynamical systems. The main problems with the choice of ANN model structure are considered and commonly used identification schemes are proposed. A procedure for derivation of parameter estimation law using Lyapunov synthesis approach, which guarantees stability and convergence of the overall identification scheme, is presented
基于人工神经网络的非线性动力系统辨识研究进展
本文介绍了利用人工神经网络(ANN)进行非线性动力系统辨识的最新进展。在统一的框架中介绍了近二十年来的主要方法。人工神经网络具有独特的特性,使其能够对非线性动态系统进行建模。考虑了人工神经网络模型结构选择中的主要问题,提出了常用的识别方案。给出了一种利用李雅普诺夫综合方法推导参数估计律的方法,保证了辨识方案的稳定性和收敛性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信