CARE: Infusing Causal Aware Thinking to Root Cause Analysis in Cloud System

Yong Xu, Xu Zhang, Chuan Luo, Si Qin, Rohitashwa Pandey, Chao Du, Qingwei Lin, Yingnong Dang, Andrew Zhou
{"title":"CARE: Infusing Causal Aware Thinking to Root Cause Analysis in Cloud System","authors":"Yong Xu, Xu Zhang, Chuan Luo, Si Qin, Rohitashwa Pandey, Chao Du, Qingwei Lin, Yingnong Dang, Andrew Zhou","doi":"10.1145/3447851.3458737","DOIUrl":null,"url":null,"abstract":"With millions of customers accessing online service all over the world, ensuring high service availability is very critical for cloud system. In recent years, empowered by advanced data mining and machine learning technology, there emerges extensive study on data-driven solution to detect anomalous system behavior and diagnose the root cause. However, without any surveilance of data generation process, the existing passive data-driven approach may lead to biased analysis result induced by observed and unobserved confounding factors in the dynamic and heterogeneous system, and thus affect service availability with misleading mitigation actions. In this paper, we propose to infuse causal thinking to the current data-driven solution for cloud system. We developed CARE, a causal aware root cause discovery engine, which utilizes Random Control Trial to proactively generate less ambiguous data for further analysis. A case study shows the application of CARE to Microsoft Office365.","PeriodicalId":166666,"journal":{"name":"Proceedings of the 1st Workshop on High Availability and Observability of Cloud Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on High Availability and Observability of Cloud Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447851.3458737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With millions of customers accessing online service all over the world, ensuring high service availability is very critical for cloud system. In recent years, empowered by advanced data mining and machine learning technology, there emerges extensive study on data-driven solution to detect anomalous system behavior and diagnose the root cause. However, without any surveilance of data generation process, the existing passive data-driven approach may lead to biased analysis result induced by observed and unobserved confounding factors in the dynamic and heterogeneous system, and thus affect service availability with misleading mitigation actions. In this paper, we propose to infuse causal thinking to the current data-driven solution for cloud system. We developed CARE, a causal aware root cause discovery engine, which utilizes Random Control Trial to proactively generate less ambiguous data for further analysis. A case study shows the application of CARE to Microsoft Office365.
关注:将因果意识思维注入云系统的根本原因分析
随着全球数以百万计的客户访问在线服务,确保高服务可用性对云系统来说非常关键。近年来,在先进的数据挖掘和机器学习技术的支持下,对数据驱动解决方案进行了广泛的研究,以检测系统异常行为并诊断根本原因。然而,现有的被动数据驱动方法在没有对数据生成过程进行监控的情况下,可能会导致动态异构系统中观察到和未观察到的混杂因素导致分析结果偏倚,从而影响服务的可用性,并产生误导性的缓解措施。在本文中,我们提出将因果思维注入到当前云系统的数据驱动解决方案中。我们开发了CARE,这是一个因果意识的根本原因发现引擎,它利用随机控制试验来主动生成较少模糊的数据,以供进一步分析。通过实例介绍了CARE在Microsoft Office365中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信