{"title":"A semi-supervised temporal clustering method for facial emotion analysis","authors":"Rodrigo Araujo, M. Kamel","doi":"10.1109/ICMEW.2014.6890712","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a semi-supervised temporal clustering method and apply it to the complex problem of facial emotion categorization. The proposed method, which uses a mechanism to add side information based on the semi-supervised kernel k-means framework, is an extension of the temporal clustering algorithm Aligned Cluster Analysis (ACA). We show that simply adding a small amount of soft constraints, in the form of must-link and cannot-link, improves the overall accuracy of the state-of-the-art method, ACA without adding any extra computational complexity. The results on the non-posed database VAM corpus for three different emotion primitives (valence, dominance, and activation) show improvements compared to the original approach.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we propose a semi-supervised temporal clustering method and apply it to the complex problem of facial emotion categorization. The proposed method, which uses a mechanism to add side information based on the semi-supervised kernel k-means framework, is an extension of the temporal clustering algorithm Aligned Cluster Analysis (ACA). We show that simply adding a small amount of soft constraints, in the form of must-link and cannot-link, improves the overall accuracy of the state-of-the-art method, ACA without adding any extra computational complexity. The results on the non-posed database VAM corpus for three different emotion primitives (valence, dominance, and activation) show improvements compared to the original approach.