A semi-supervised temporal clustering method for facial emotion analysis

Rodrigo Araujo, M. Kamel
{"title":"A semi-supervised temporal clustering method for facial emotion analysis","authors":"Rodrigo Araujo, M. Kamel","doi":"10.1109/ICMEW.2014.6890712","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a semi-supervised temporal clustering method and apply it to the complex problem of facial emotion categorization. The proposed method, which uses a mechanism to add side information based on the semi-supervised kernel k-means framework, is an extension of the temporal clustering algorithm Aligned Cluster Analysis (ACA). We show that simply adding a small amount of soft constraints, in the form of must-link and cannot-link, improves the overall accuracy of the state-of-the-art method, ACA without adding any extra computational complexity. The results on the non-posed database VAM corpus for three different emotion primitives (valence, dominance, and activation) show improvements compared to the original approach.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose a semi-supervised temporal clustering method and apply it to the complex problem of facial emotion categorization. The proposed method, which uses a mechanism to add side information based on the semi-supervised kernel k-means framework, is an extension of the temporal clustering algorithm Aligned Cluster Analysis (ACA). We show that simply adding a small amount of soft constraints, in the form of must-link and cannot-link, improves the overall accuracy of the state-of-the-art method, ACA without adding any extra computational complexity. The results on the non-posed database VAM corpus for three different emotion primitives (valence, dominance, and activation) show improvements compared to the original approach.
面部情绪分析的半监督时间聚类方法
本文提出了一种半监督时间聚类方法,并将其应用于复杂的面部情绪分类问题。该方法是对时间聚类算法对齐聚类分析(ACA)的扩展,采用基于半监督核k-均值框架的侧信息添加机制。我们表明,简单地以必须链接和不能链接的形式添加少量软约束,可以在不增加任何额外计算复杂性的情况下提高最先进方法ACA的整体精度。在非定位数据库VAM语料库上对三种不同的情绪原语(效价、优势和激活)的结果表明,与原始方法相比,该方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信