A Novel Stochastic Gradient Descent Algorithm Based on Grouping over Heterogeneous Cluster Systems for Distributed Deep Learning

Wenbin Jiang, Geyan Ye, L. Yang, Jian Zhu, Yang Ma, Xia Xie, Hai Jin
{"title":"A Novel Stochastic Gradient Descent Algorithm Based on Grouping over Heterogeneous Cluster Systems for Distributed Deep Learning","authors":"Wenbin Jiang, Geyan Ye, L. Yang, Jian Zhu, Yang Ma, Xia Xie, Hai Jin","doi":"10.1109/CCGRID.2019.00053","DOIUrl":null,"url":null,"abstract":"On heterogeneous cluster systems, the convergence performances of neural network models are greatly troubled by the different performances of machines. In this paper, we propose a novel distributed Stochastic Gradient Descent (SGD) algorithm named Grouping-SGD for distributed deep learning, which converges faster than Sync-SGD, Async-SGD, and Stale-SGD. In Grouping-SGD, machines are partitioned into multiple groups, ensuring that machines in the same group have similar performances. Machines in the same group update the models synchronously, while different groups update the models asynchronously. To improve the performance of Grouping-SGD further, the parameter servers are arranged from fast to slow, and they are responsible for updating the model parameters from the lower layer to the higher layer respectively. The experimental results indicate that Grouping-SGD can achieve 1.2-3.7 times speedups using popular image classification benchmarks: MNIST, Cifar10, Cifar100, and ImageNet, compared to Sync-SGD, Async-SGD, and Stale-SGD.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

On heterogeneous cluster systems, the convergence performances of neural network models are greatly troubled by the different performances of machines. In this paper, we propose a novel distributed Stochastic Gradient Descent (SGD) algorithm named Grouping-SGD for distributed deep learning, which converges faster than Sync-SGD, Async-SGD, and Stale-SGD. In Grouping-SGD, machines are partitioned into multiple groups, ensuring that machines in the same group have similar performances. Machines in the same group update the models synchronously, while different groups update the models asynchronously. To improve the performance of Grouping-SGD further, the parameter servers are arranged from fast to slow, and they are responsible for updating the model parameters from the lower layer to the higher layer respectively. The experimental results indicate that Grouping-SGD can achieve 1.2-3.7 times speedups using popular image classification benchmarks: MNIST, Cifar10, Cifar100, and ImageNet, compared to Sync-SGD, Async-SGD, and Stale-SGD.
一种基于异构集群系统分组的分布式深度学习随机梯度下降算法
在异构集群系统中,神经网络模型的收敛性能受到机器性能差异的极大影响。在本文中,我们提出了一种新的分布式随机梯度下降(SGD)算法,称为group -SGD,它比Sync-SGD, Async-SGD和Stale-SGD收敛更快。在group - sgd中,机器被划分为多个组,确保同一组中的机器具有相似的性能。同一组中的机器同步更新模型,而不同组则异步更新模型。为了进一步提高group - sgd的性能,参数服务器由快到慢排列,分别负责从低层到高层的模型参数更新。实验结果表明,使用流行的图像分类基准:MNIST、Cifar10、Cifar100和ImageNet,与Sync-SGD、Async-SGD和Stale-SGD相比,group - sgd可以实现1.2-3.7倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信