Finding Geometric Medians with Location Privacy

Eyal Nussbaum, M. Segal
{"title":"Finding Geometric Medians with Location Privacy","authors":"Eyal Nussbaum, M. Segal","doi":"10.1109/TrustCom50675.2020.00256","DOIUrl":null,"url":null,"abstract":"We examine the problem of discovering the set $P$ of points in a given topology which constitutes a k-median set for that topology, while maintaining location privacy. That is, there exists a set $U$ of points in a d-dimensional topology for which a k-median set must be found by some algorithm A, without disclosing the location of points in $U$ to the executor of A. We define a privacy preserving data model for a coordinate system we call a “Topology Descriptor Grid”, and show how it can be used to find the rectilinear 1-median of the system and a constant factor approximation for the Euclidean 1-median. Additionally, we achieve a constant factor approximation for the rectilinear 2-median of a grid topology.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We examine the problem of discovering the set $P$ of points in a given topology which constitutes a k-median set for that topology, while maintaining location privacy. That is, there exists a set $U$ of points in a d-dimensional topology for which a k-median set must be found by some algorithm A, without disclosing the location of points in $U$ to the executor of A. We define a privacy preserving data model for a coordinate system we call a “Topology Descriptor Grid”, and show how it can be used to find the rectilinear 1-median of the system and a constant factor approximation for the Euclidean 1-median. Additionally, we achieve a constant factor approximation for the rectilinear 2-median of a grid topology.
寻找几何中位数与位置隐私
我们研究了在保持位置隐私的同时,在给定拓扑中发现构成该拓扑的k中值集的点的集合P的问题。也就是说,在d维拓扑中存在一个点的集合$U$,它的k-中位数集必须通过某种算法a找到,而不会向a的执行者透露$U$中点的位置。我们定义了一个隐私保护数据模型,我们称之为“拓扑描述符网格”,并展示了如何使用它来找到系统的直线1-中位数和欧几里得1-中位数的常因子近似。此外,我们还实现了网格拓扑的直线2-中位数的常因子近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信