Frequent itemsets summarization based on neural network

Zhikai Zhao, Jian-Sheng Qian, Jian Cheng, Nan-Nan Lu
{"title":"Frequent itemsets summarization based on neural network","authors":"Zhikai Zhao, Jian-Sheng Qian, Jian Cheng, Nan-Nan Lu","doi":"10.1109/ICCSIT.2009.5234899","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Neural Network and cluster based method K-ANN-FP to summarize the frequent itemsets to solve the interpretability obstacle of the large number of frequent itemsets. This method assume that the item exit in each frequent itemsets or not to contribute a Boolean matrix, then take the matrix and the corresponding frequency vectors to train the net. We use cluster to shorten the training time and keep the total restoration in a small threshold. We take the experiment on two UCI datasets; the result shows that the proposed method has fine effect both on the restoration error and the running time.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a Neural Network and cluster based method K-ANN-FP to summarize the frequent itemsets to solve the interpretability obstacle of the large number of frequent itemsets. This method assume that the item exit in each frequent itemsets or not to contribute a Boolean matrix, then take the matrix and the corresponding frequency vectors to train the net. We use cluster to shorten the training time and keep the total restoration in a small threshold. We take the experiment on two UCI datasets; the result shows that the proposed method has fine effect both on the restoration error and the running time.
基于神经网络的频繁项集摘要
本文提出了一种基于神经网络和聚类的K-ANN-FP方法对频繁项集进行总结,以解决大量频繁项集的可解释性障碍。该方法假定项目在每个频繁项目集中存在与否贡献一个布尔矩阵,然后取该矩阵和相应的频率向量来训练网络。我们使用聚类来缩短训练时间,使总恢复保持在一个小的阈值内。我们在两个UCI数据集上进行实验;结果表明,该方法在恢复误差和运行时间上都有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信