Software and data sets

Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, C. Albrecht, Xiaoxiang Zhu
{"title":"Software and data sets","authors":"Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, C. Albrecht, Xiaoxiang Zhu","doi":"10.1201/9780429058264-11","DOIUrl":null,"url":null,"abstract":"S elf-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset Self-Supervised Learning for Earth Observa-tion-Sentinel-1/2 ( SSL4EO - S12 ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at https://github.com/zhu-xlab/ SSL4EO-S12.","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time Series Clustering and Classification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429058264-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

S elf-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset Self-Supervised Learning for Earth Observa-tion-Sentinel-1/2 ( SSL4EO - S12 ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at https://github.com/zhu-xlab/ SSL4EO-S12.
软件和数据集
自监督预训练具有在没有人工注释的情况下从大规模地球观测(EO)数据中生成表达性表示的潜力。然而,该领域现有的大多数预训练都是基于ImageNet或中型标记遥感(RS)数据集。在本文中,我们分享了一个无标记数据集自监督学习地球观测-哨兵1/2 (SSL4EO - S12),以组装大规模,全球,多模式和多季节的卫星图像语料库。我们展示了SSL4EO-S12在自监督预训练中取得成功的一组代表性方法:动量对比(MoCo)、无标签自蒸馏(DINO)、蒙面自动编码器(MAE)和data2vec,以及多个下游应用,包括场景分类、语义分割和变化检测。我们的基准测试结果证明了与现有数据集相比,SSL4EO-S12的有效性。数据集、相关源代码和预训练模型可从https://github.com/zhu-xlab/ SSL4EO-S12获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信