RT-DBSCAN: Accelerating DBSCAN using Ray Tracing Hardware

Vani Nagarajan, Milind Kulkarni
{"title":"RT-DBSCAN: Accelerating DBSCAN using Ray Tracing Hardware","authors":"Vani Nagarajan, Milind Kulkarni","doi":"10.1109/IPDPS54959.2023.00100","DOIUrl":null,"url":null,"abstract":"General Purpose computing on Graphical Processing Units (GPGPU) has resulted in unprecedented levels of speedup over its CPU counterparts, allowing programmers to harness the computational power of GPU shader cores to accelerate other computing applications. But this style of acceleration is best suited for regular computations (e.g., linear algebra). Recent GPUs feature new Ray Tracing (RT) cores that instead speed up the irregular process of ray tracing using Bounding Volume Hierarchies. While these cores seem limited in functionality, they can be used to accelerate n-body problems by leveraging RT cores to accelerate the required distance computations. In this work, we propose RT-DBSCAN, the first RT-accelerated DBSCAN implementation. We use RT cores to accelerate Density-Based Clustering of Applications with Noise (DBSCAN) by translating fixed-radius nearest neighbor queries to ray tracing queries. We show that leveraging the RT hardware results in speedups between 1.3x to 4x over current state-of-the-art, GPU-based DBSCAN implementations.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

General Purpose computing on Graphical Processing Units (GPGPU) has resulted in unprecedented levels of speedup over its CPU counterparts, allowing programmers to harness the computational power of GPU shader cores to accelerate other computing applications. But this style of acceleration is best suited for regular computations (e.g., linear algebra). Recent GPUs feature new Ray Tracing (RT) cores that instead speed up the irregular process of ray tracing using Bounding Volume Hierarchies. While these cores seem limited in functionality, they can be used to accelerate n-body problems by leveraging RT cores to accelerate the required distance computations. In this work, we propose RT-DBSCAN, the first RT-accelerated DBSCAN implementation. We use RT cores to accelerate Density-Based Clustering of Applications with Noise (DBSCAN) by translating fixed-radius nearest neighbor queries to ray tracing queries. We show that leveraging the RT hardware results in speedups between 1.3x to 4x over current state-of-the-art, GPU-based DBSCAN implementations.
RT-DBSCAN:使用光线追踪硬件加速DBSCAN
图形处理单元(GPGPU)上的通用计算导致了前所未有的CPU加速水平,允许程序员利用GPU着色器核心的计算能力来加速其他计算应用程序。但这种加速方式最适合常规计算(例如,线性代数)。最近的gpu具有新的光线追踪(RT)内核,而不是使用边界体层次来加速不规则的光线追踪过程。虽然这些核在功能上似乎有限,但它们可以通过利用RT核加速所需的距离计算来加速n体问题。在这项工作中,我们提出了RT-DBSCAN,这是第一个rt加速的DBSCAN实现。我们使用RT内核通过将固定半径最近邻查询转换为光线跟踪查询来加速基于密度的带噪声应用聚类(DBSCAN)。我们表明,与当前最先进的、基于gpu的DBSCAN实现相比,利用RT硬件可以将速度提高1.3到4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信