Clustered Bert Model for predicting Retweet Popularity

Surbhi Kakar, Deepali Dhaka, Monica Mehrotra
{"title":"Clustered Bert Model for predicting Retweet Popularity","authors":"Surbhi Kakar, Deepali Dhaka, Monica Mehrotra","doi":"10.1109/ICACSIS56558.2022.9923496","DOIUrl":null,"url":null,"abstract":"This work aims to predict retweet popularity of covid19 tweet corpus. Our work fuses unsupervised and supervised learning techniques to create retweet popularity model. In the first phase, we use a Clustered Bert model, which works on clustering the Bert embeddings using clustering algorithms on the textual data to generate novel and meaningful feature set for our model. In the second phase, we use the output of Clustered Bert model as an input to the Supervised Regression models intending to predict retweet popularity. Our work also draws a comparison between features from numeric model; emotions/sentiment model; and Clustered Bert model. Three different Regression models, belonging to different categories: Nearest Neighbors, Ensemble and Stacked models are then tested on the final feature-set to generate predictions for our model. The results show higher accuracy when the Clustered Bert model is used in combination with numerical and emotion/sentiment model. The experiment shows better results for Stacked Regression models out of all the three regressors used for our study.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work aims to predict retweet popularity of covid19 tweet corpus. Our work fuses unsupervised and supervised learning techniques to create retweet popularity model. In the first phase, we use a Clustered Bert model, which works on clustering the Bert embeddings using clustering algorithms on the textual data to generate novel and meaningful feature set for our model. In the second phase, we use the output of Clustered Bert model as an input to the Supervised Regression models intending to predict retweet popularity. Our work also draws a comparison between features from numeric model; emotions/sentiment model; and Clustered Bert model. Three different Regression models, belonging to different categories: Nearest Neighbors, Ensemble and Stacked models are then tested on the final feature-set to generate predictions for our model. The results show higher accuracy when the Clustered Bert model is used in combination with numerical and emotion/sentiment model. The experiment shows better results for Stacked Regression models out of all the three regressors used for our study.
预测转发流行度的聚类Bert模型
本工作旨在预测covid - 19推文语料库的转发流行度。我们的工作融合了无监督和有监督学习技术来创建转发流行模型。在第一阶段,我们使用聚类Bert模型,该模型使用文本数据上的聚类算法对Bert嵌入进行聚类,为我们的模型生成新颖且有意义的特征集。在第二阶段,我们使用聚类伯特模型的输出作为监督回归模型的输入,旨在预测转发流行度。我们的工作还从数值模型中得出了特征的比较;情感/情绪模型;和聚类伯特模型。三种不同的回归模型,属于不同的类别:最近邻,集成和堆叠模型,然后在最终的特征集上进行测试,为我们的模型生成预测。结果表明,将聚类Bert模型与数值模型和情感/情感模型结合使用时,准确率更高。实验表明,在我们研究中使用的所有三种回归量中,堆叠回归模型的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信