Local Shimura varieties

P. Scholze, Jared Weinstein
{"title":"Local Shimura varieties","authors":"P. Scholze, Jared Weinstein","doi":"10.23943/PRINCETON/9780691202082.003.0024","DOIUrl":null,"url":null,"abstract":"This chapter specializes the theory back to the case of local Shimura varieties, and explains the relation with Rapoport-Zink spaces. It begins with a local Shimura datum. A local Shimura datum is a triple (G, b, µ) consisting of a reductive group G over Qp, a conjugacy class µ of minuscule cocharacters. Rapoport-Zink spaces are moduli of deformations of a fixed p-divisible group. After reviewing these, the chapter shows that the diamond associated with the generic fiber of a Rapoport-Zink space is isomorphic to a moduli space of shtukas of the form with µ minuscule. It then extends the results to general EL and PEL data.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/PRINCETON/9780691202082.003.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter specializes the theory back to the case of local Shimura varieties, and explains the relation with Rapoport-Zink spaces. It begins with a local Shimura datum. A local Shimura datum is a triple (G, b, µ) consisting of a reductive group G over Qp, a conjugacy class µ of minuscule cocharacters. Rapoport-Zink spaces are moduli of deformations of a fixed p-divisible group. After reviewing these, the chapter shows that the diamond associated with the generic fiber of a Rapoport-Zink space is isomorphic to a moduli space of shtukas of the form with µ minuscule. It then extends the results to general EL and PEL data.
志村本地品种
本章专门将理论回归到局部志村变异的情况,并解释了与Rapoport-Zink空间的关系。它从当地的志村基准点开始。局部Shimura基准是由一个约化群G / Qp组成的三重体(G, b,µ),一个极小协元的共轭类µ。Rapoport-Zink空间是固定p可分群变形的模。在回顾了这些之后,本章证明了与Rapoport-Zink空间的一般纤维相关联的菱形与具有µminusular形式的shtukas模空间是同构的。然后将结果扩展到一般的EL和PEL数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信