MRI image reconstruction via new K-space sampling scheme based on separable transform

Ashkan Oliaiee, A. Ghaffari, E. Fatemizadeh
{"title":"MRI image reconstruction via new K-space sampling scheme based on separable transform","authors":"Ashkan Oliaiee, A. Ghaffari, E. Fatemizadeh","doi":"10.1109/IRANIANMVIP.2013.6779963","DOIUrl":null,"url":null,"abstract":"Reducing the time required for MRI, has taken a lot of attention since its inventions. Compressed sensing (CS) is a relatively new method used a lot to reduce the required time. Usage of ordinary compressed sensing in MRI imaging needs conversion of 2D MRI signal (image) to 1D signal by some techniques. This conversion of the signal from 2D to 1D results in heavy computational burden. In this paper, based on separable transforms, a method is proposed which enables the usage of CS in MRI directly in 2D case. By means of this method, imaging can be done faster and with less computational burden","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the time required for MRI, has taken a lot of attention since its inventions. Compressed sensing (CS) is a relatively new method used a lot to reduce the required time. Usage of ordinary compressed sensing in MRI imaging needs conversion of 2D MRI signal (image) to 1D signal by some techniques. This conversion of the signal from 2D to 1D results in heavy computational burden. In this paper, based on separable transforms, a method is proposed which enables the usage of CS in MRI directly in 2D case. By means of this method, imaging can be done faster and with less computational burden
基于可分离变换的新k空间采样方案的MRI图像重建
减少核磁共振成像所需的时间,自发明以来就引起了很多关注。压缩感知(CS)是一种相对较新的方法,用于减少所需的时间。普通压缩感知在MRI成像中的应用,需要通过一定的技术将二维MRI信号(图像)转换为一维信号。这种从二维到一维的信号转换导致了沉重的计算负担。本文提出了一种基于可分变换的方法,使磁共振成像中的CS在二维情况下可以直接使用。采用这种方法,成像速度更快,计算量更少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信