Power delay product optimized hybrid full adder circuits

M. Rashid, A. Muhtaroğlu
{"title":"Power delay product optimized hybrid full adder circuits","authors":"M. Rashid, A. Muhtaroğlu","doi":"10.1109/IDAP.2017.8090319","DOIUrl":null,"url":null,"abstract":"Data processing performed by adder circuits need to achieve low delay and low power at the same time while maintaining low cost, due to the steep growth in mobile computation devices. Recently proposed 1-bit full adder design that hybridizes transmission gates (TG) and standard CMOS offers significant PDP improvement. Two full adder implementations are presented in this paper which further optimizes the previously presented circuits: First (CKT1) deploys GDI-cell based XNOR module to decrease PDP, while the second circuit (CKT2) reduces the worst case delay with equivalent PDP. Simulation results indicate the proposed CKT1 has 4.8% and 2.5% reduced PDP for realistic cascade and FO4 loads respectively, with 16% improved cost compared to literature. CKT2 maintains comparable PDP with 11.3% and 2% improved delay for realistic cascade and FO4 loads respectively.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data processing performed by adder circuits need to achieve low delay and low power at the same time while maintaining low cost, due to the steep growth in mobile computation devices. Recently proposed 1-bit full adder design that hybridizes transmission gates (TG) and standard CMOS offers significant PDP improvement. Two full adder implementations are presented in this paper which further optimizes the previously presented circuits: First (CKT1) deploys GDI-cell based XNOR module to decrease PDP, while the second circuit (CKT2) reduces the worst case delay with equivalent PDP. Simulation results indicate the proposed CKT1 has 4.8% and 2.5% reduced PDP for realistic cascade and FO4 loads respectively, with 16% improved cost compared to literature. CKT2 maintains comparable PDP with 11.3% and 2% improved delay for realistic cascade and FO4 loads respectively.
功率延迟积优化混合全加法器电路
由于移动计算设备的急剧增长,加法器电路进行的数据处理需要在保持低成本的同时实现低延迟和低功耗。最近提出的混合传输门(TG)和标准CMOS的1位全加法器设计提供了显着的PDP改进。本文提出了两个完整的加法器实现,进一步优化了先前提出的电路:第一个(CKT1)部署基于gdi单元的XNOR模块来降低PDP,而第二个电路(CKT2)通过等效PDP来减少最坏情况下的延迟。仿真结果表明,与文献相比,CKT1在实际级联和FO4负载下的PDP分别降低了4.8%和2.5%,成本提高了16%。CKT2在实际级联和FO4负载下分别保持了11.3%和2%的延迟改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信