Identification of fuzzy rules from learning data

Bernd-Markus Pfeiffer
{"title":"Identification of fuzzy rules from learning data","authors":"Bernd-Markus Pfeiffer","doi":"10.1016/0066-4138(94)90041-8","DOIUrl":null,"url":null,"abstract":"<div><p>Fuzzy identification means to find a set of fuzzy if-then rules with well defined attributes, that can describe the given <span><math><mtext>I</mtext><mtext>O</mtext><mtext>-</mtext><mtext>behaviour</mtext></math></span> of a system. In the identification algorithm proposed here the subject of learning are the rule conclusions i.e. the membership functions of output attributes in form of singletons. For fixed input membership functions learning is shown to be a least squares optimization problem linear in the unknown parameters. Examples show applications of the algorithm to the linguistic formulation of a PI control strategy and to identification of a nonlinear time-discrete dynamic system.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 49-54"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90041-8","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Fuzzy identification means to find a set of fuzzy if-then rules with well defined attributes, that can describe the given IO-behaviour of a system. In the identification algorithm proposed here the subject of learning are the rule conclusions i.e. the membership functions of output attributes in form of singletons. For fixed input membership functions learning is shown to be a least squares optimization problem linear in the unknown parameters. Examples show applications of the algorithm to the linguistic formulation of a PI control strategy and to identification of a nonlinear time-discrete dynamic system.

从学习数据中识别模糊规则
模糊识别是指寻找一组具有良好定义属性的模糊if-then规则,这些规则可以描述系统的给定io行为。在本文提出的识别算法中,学习的对象是规则结论,即单例形式的输出属性的隶属函数。对于固定输入的隶属函数,学习被证明是一个在未知参数下线性的最小二乘优化问题。实例显示了该算法在PI控制策略的语言表述和非线性时间离散动态系统识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信