Optimistic and Topological Value Iteration for Simple Stochastic Games

Muqsit Azeem, Alexandros Evangelidis, Jan Křetínský, Alexander Slivinskiy, Maximilian Weininger
{"title":"Optimistic and Topological Value Iteration for Simple Stochastic Games","authors":"Muqsit Azeem, Alexandros Evangelidis, Jan Křetínský, Alexander Slivinskiy, Maximilian Weininger","doi":"10.48550/arXiv.2207.14417","DOIUrl":null,"url":null,"abstract":". While value iteration (VI) is a standard solution approach to simple stochastic games (SSGs), it suffered from the lack of a stopping criterion. Recently, several solutions have appeared, among them also “optimistic” VI (OVI). However, OVI is applicable only to one-player SSGs with no end components. We lift these two assumptions, making it available to general SSGs . Further, we utilize the idea in the context of topological VI, where we provide an efficient precise solution. In order to compare the new algorithms with the state of the art, we use not only the standard benchmarks, but we also design a random generator of SSGs, which can be biased towards various types of models, aiding in understanding the advantages of different algorithms on SSGs.","PeriodicalId":335085,"journal":{"name":"Automated Technology for Verification and Analysis","volume":"281 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Technology for Verification and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.14417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. While value iteration (VI) is a standard solution approach to simple stochastic games (SSGs), it suffered from the lack of a stopping criterion. Recently, several solutions have appeared, among them also “optimistic” VI (OVI). However, OVI is applicable only to one-player SSGs with no end components. We lift these two assumptions, making it available to general SSGs . Further, we utilize the idea in the context of topological VI, where we provide an efficient precise solution. In order to compare the new algorithms with the state of the art, we use not only the standard benchmarks, but we also design a random generator of SSGs, which can be biased towards various types of models, aiding in understanding the advantages of different algorithms on SSGs.
简单随机对策的乐观和拓扑值迭代
. 虽然值迭代(VI)是简单随机博弈(ssg)的标准解决方法,但它缺乏停止准则。最近出现了几种解决方案,其中也有“乐观”的VI (OVI)。但是,OVI只适用于没有终端组件的单人ssg。我们取消了这两个假设,使其适用于一般的ssg。此外,我们在拓扑VI的背景下利用这个想法,我们提供了一个有效的精确的解决方案。为了将新算法与最先进的算法进行比较,我们不仅使用了标准基准,而且还设计了一个ssg的随机生成器,它可以偏向于各种类型的模型,有助于理解不同算法在ssg上的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信