LiteGT

Cong Chen, Chaofan Tao, Ngai Wong
{"title":"LiteGT","authors":"Cong Chen, Chaofan Tao, Ngai Wong","doi":"10.1145/3459637.3482272","DOIUrl":null,"url":null,"abstract":"Transformers have shown great potential for modeling long-term dependencies for natural language processing and computer vision. However, little study has applied transformers to graphs, which is challenging due to the poor scalability of the attention mechanism and the under-exploration of graph inductive bias. To bridge this gap, we propose a Lite Graph Transformer (LiteGT) that learns on arbitrary graphs efficiently. First, a node sampling strategy is proposed to sparsify the considered nodes in self-attention with only O (Nlog N) time. Second, we devise two kernelization approaches to form two-branch attention blocks, which not only leverage graph-specific topology information, but also reduce computation further to O (1 over 2 Nlog N). Third, the nodes are updated with different attention schemes during training, thus largely mitigating over-smoothing problems when the model layers deepen. Extensive experiments demonstrate that LiteGT achieves competitive performance on both node classification and link prediction on datasets with millions of nodes. Specifically, Jaccard + Sampling + Dim. reducing setting reduces more than 100x computation and halves the model size without performance degradation.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Transformers have shown great potential for modeling long-term dependencies for natural language processing and computer vision. However, little study has applied transformers to graphs, which is challenging due to the poor scalability of the attention mechanism and the under-exploration of graph inductive bias. To bridge this gap, we propose a Lite Graph Transformer (LiteGT) that learns on arbitrary graphs efficiently. First, a node sampling strategy is proposed to sparsify the considered nodes in self-attention with only O (Nlog N) time. Second, we devise two kernelization approaches to form two-branch attention blocks, which not only leverage graph-specific topology information, but also reduce computation further to O (1 over 2 Nlog N). Third, the nodes are updated with different attention schemes during training, thus largely mitigating over-smoothing problems when the model layers deepen. Extensive experiments demonstrate that LiteGT achieves competitive performance on both node classification and link prediction on datasets with millions of nodes. Specifically, Jaccard + Sampling + Dim. reducing setting reduces more than 100x computation and halves the model size without performance degradation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信