Automating Template Creation for Ranking-Based Dialogue Models

Jingxiang Chen, Heba Elfardy, Simi Wang, Andrea Kahn, Jared Kramer
{"title":"Automating Template Creation for Ranking-Based Dialogue Models","authors":"Jingxiang Chen, Heba Elfardy, Simi Wang, Andrea Kahn, Jared Kramer","doi":"10.18653/v1/2020.nlp4convai-1.9","DOIUrl":null,"url":null,"abstract":"Dialogue response generation models that use template ranking rather than direct sequence generation allow model developers to limit generated responses to pre-approved messages. However, manually creating templates is time-consuming and requires domain expertise. To alleviate this problem, we explore automating the process of creating dialogue templates by using unsupervised methods to cluster historical utterances and selecting representative utterances from each cluster. Specifically, we propose an end-to-end model called Deep Sentence Encoder Clustering (DSEC) that uses an auto-encoder structure to jointly learn the utterance representation and construct template clusters. We compare this method to a random baseline that randomly assigns templates to clusters as well as a strong baseline that performs the sentence encoding and the utterance clustering sequentially. To evaluate the performance of the proposed method, we perform an automatic evaluation with two annotated customer service datasets to assess clustering effectiveness, and a human-in-the-loop experiment using a live customer service application to measure the acceptance rate of the generated templates. DSEC performs best in the automatic evaluation, beats both the sequential and random baselines on most metrics in the human-in-the-loop experiment, and shows promising results when compared to gold/manually created templates.","PeriodicalId":407342,"journal":{"name":"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nlp4convai-1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dialogue response generation models that use template ranking rather than direct sequence generation allow model developers to limit generated responses to pre-approved messages. However, manually creating templates is time-consuming and requires domain expertise. To alleviate this problem, we explore automating the process of creating dialogue templates by using unsupervised methods to cluster historical utterances and selecting representative utterances from each cluster. Specifically, we propose an end-to-end model called Deep Sentence Encoder Clustering (DSEC) that uses an auto-encoder structure to jointly learn the utterance representation and construct template clusters. We compare this method to a random baseline that randomly assigns templates to clusters as well as a strong baseline that performs the sentence encoding and the utterance clustering sequentially. To evaluate the performance of the proposed method, we perform an automatic evaluation with two annotated customer service datasets to assess clustering effectiveness, and a human-in-the-loop experiment using a live customer service application to measure the acceptance rate of the generated templates. DSEC performs best in the automatic evaluation, beats both the sequential and random baselines on most metrics in the human-in-the-loop experiment, and shows promising results when compared to gold/manually created templates.
为基于排名的对话模型自动创建模板
使用模板排序而不是直接序列生成的对话响应生成模型允许模型开发人员将生成的响应限制为预先批准的消息。然而,手动创建模板非常耗时,并且需要领域专业知识。为了缓解这一问题,我们探索了通过使用无监督方法对历史话语进行聚类并从每个聚类中选择代表性话语来自动化创建对话模板的过程。具体来说,我们提出了一个端到端模型,称为深度句子编码器聚类(DSEC),它使用自动编码器结构来共同学习话语表示和构建模板聚类。我们将该方法与随机分配模板到聚类的随机基线以及顺序执行句子编码和话语聚类的强基线进行比较。为了评估所提出方法的性能,我们使用两个带注释的客户服务数据集执行自动评估以评估聚类有效性,并使用实时客户服务应用程序进行人在环实验以测量生成模板的接受率。DSEC在自动评估中表现最好,在人在循环实验中的大多数指标上都优于顺序基线和随机基线,并且与黄金/手动创建的模板相比显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信