{"title":"Symbol Grounding Problem","authors":"Angelo C. Loula, J. Queiroz","doi":"10.4018/978-1-59904-849-9.CH226","DOIUrl":null,"url":null,"abstract":"INTRODUCTION The topic of representation acquisition, manipulation and use has been a major trend in Artificial Intelligence since its beginning and persists as an important matter in current research. Particularly, due to initial focus on development of symbolic systems, this topic is usually related to research in symbol grounding by artificial intelligent systems. Symbolic systems, as proposed by Newell & Simon (1976), are characterized as a high-level cognition system in which symbols are seen as \" [lying] at the root of intelligent action \" (Newell and Simon, 1976, p.83). Moreover, they stated the Physical Symbol Systems Hypothesis (PSSH), making the strong claim that \" a physical symbol system has the necessary and sufficient means for general intelligent action \" (p.87). This hypothesis, therefore, sets equivalence between symbol systems and intelligent action, in such a way that every intelligent action would be originated in a symbol system and every symbol system is capable of intelligent action. The symbol system described by Newell and Simon (1976) is seen as a computer program capable of manipulating entities called symbols, 'physi-cal patterns' combined in expressions, which can be created, modified or destroyed by syntactic processes. Two main capabilities of symbol systems were said to provide the system with the properties of closure and completeness, and so the system itself could be built upon symbols alone (Newell & Simon, 1976). These capabilities were designation – expressions designate objects – and interpretation – expressions could be processed by the system. The question was, and much of the criticism about symbol systems came from it, how these systems, built upon and manipulating just symbols, could designate something outside its domain. Symbol systems lack 'intentionality', stated John Searle (1980), in an important essay in which he described a widely known mental experiment (Gedan-kenexperiment), the 'Chinese Room Argument'. In this experiment, Searle places himself in a room where he is given correlation rules that permits him to determine answers in Chinese to question also in Chinese given to him, although Searle as the interpreter knows no Chinese. To an outside observer (who understands Chinese), the man in this room understands Chinese quite well, even though he is actually manipulating non-interpreted symbols using formal rules. For an outside observer the symbols in the questions and answers do represent something, but for the man in the room the symbols lack intentionality. The man in the room acts like a symbol system, …","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
INTRODUCTION The topic of representation acquisition, manipulation and use has been a major trend in Artificial Intelligence since its beginning and persists as an important matter in current research. Particularly, due to initial focus on development of symbolic systems, this topic is usually related to research in symbol grounding by artificial intelligent systems. Symbolic systems, as proposed by Newell & Simon (1976), are characterized as a high-level cognition system in which symbols are seen as " [lying] at the root of intelligent action " (Newell and Simon, 1976, p.83). Moreover, they stated the Physical Symbol Systems Hypothesis (PSSH), making the strong claim that " a physical symbol system has the necessary and sufficient means for general intelligent action " (p.87). This hypothesis, therefore, sets equivalence between symbol systems and intelligent action, in such a way that every intelligent action would be originated in a symbol system and every symbol system is capable of intelligent action. The symbol system described by Newell and Simon (1976) is seen as a computer program capable of manipulating entities called symbols, 'physi-cal patterns' combined in expressions, which can be created, modified or destroyed by syntactic processes. Two main capabilities of symbol systems were said to provide the system with the properties of closure and completeness, and so the system itself could be built upon symbols alone (Newell & Simon, 1976). These capabilities were designation – expressions designate objects – and interpretation – expressions could be processed by the system. The question was, and much of the criticism about symbol systems came from it, how these systems, built upon and manipulating just symbols, could designate something outside its domain. Symbol systems lack 'intentionality', stated John Searle (1980), in an important essay in which he described a widely known mental experiment (Gedan-kenexperiment), the 'Chinese Room Argument'. In this experiment, Searle places himself in a room where he is given correlation rules that permits him to determine answers in Chinese to question also in Chinese given to him, although Searle as the interpreter knows no Chinese. To an outside observer (who understands Chinese), the man in this room understands Chinese quite well, even though he is actually manipulating non-interpreted symbols using formal rules. For an outside observer the symbols in the questions and answers do represent something, but for the man in the room the symbols lack intentionality. The man in the room acts like a symbol system, …