Multi-faceted Learning Paths Recommendation Via Semantic Linked Network

Juan Yang, Zhixing Huang, Hongtao Liu
{"title":"Multi-faceted Learning Paths Recommendation Via Semantic Linked Network","authors":"Juan Yang, Zhixing Huang, Hongtao Liu","doi":"10.1109/SKG.2010.12","DOIUrl":null,"url":null,"abstract":"Cognition overload is one of the major problems in current self-learning intelligent learning systems. Providing learners with the personalized learning path can effectively smooth over users’ learning disorientation. In this paper, we propose a multi-faceted recommendation framework that provides learners with personalized learning paths based on their different learning styles. Building the recommendation system mainly involves the following three steps: (1) analyze the influences of the learning style in different dimensions during the learning process, (2) automatically organize the Learning Objects (LOs) into a multi-faceted Semantic Linked Network (SLN) via self-organized rules, (3) recommend the learning path to the learner through a reasoning machine based on the constructed SLN. The experiments verify the efficiency of the proposed method.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cognition overload is one of the major problems in current self-learning intelligent learning systems. Providing learners with the personalized learning path can effectively smooth over users’ learning disorientation. In this paper, we propose a multi-faceted recommendation framework that provides learners with personalized learning paths based on their different learning styles. Building the recommendation system mainly involves the following three steps: (1) analyze the influences of the learning style in different dimensions during the learning process, (2) automatically organize the Learning Objects (LOs) into a multi-faceted Semantic Linked Network (SLN) via self-organized rules, (3) recommend the learning path to the learner through a reasoning machine based on the constructed SLN. The experiments verify the efficiency of the proposed method.
基于语义链接网络的多面学习路径推荐
认知过载是当前自主学习智能学习系统存在的主要问题之一。为学习者提供个性化的学习路径可以有效地消除用户的学习迷失。在本文中,我们提出了一个多方面的推荐框架,根据学习者的不同学习风格,为学习者提供个性化的学习路径。构建推荐系统主要包括以下三个步骤:(1)分析学习过程中不同维度的学习风格的影响;(2)通过自组织规则将学习对象(LOs)自动组织成一个多面语义链接网络(Semantic Linked Network, SLN);(3)通过基于构建的语义链接网络的推理机向学习者推荐学习路径。实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信