Early and Multi Level Fusion for Reliable Automotive Safety Systems

U. Scheunert, Philipp Lindner, E. Richter, T. Tatschke, Dominik Schestauber, E. Fuchs, G. Wanielik
{"title":"Early and Multi Level Fusion for Reliable Automotive Safety Systems","authors":"U. Scheunert, Philipp Lindner, E. Richter, T. Tatschke, Dominik Schestauber, E. Fuchs, G. Wanielik","doi":"10.1109/IVS.2007.4290114","DOIUrl":null,"url":null,"abstract":"The fusion of data from different sensorial sources is today the most promising method to increase robustness and reliability of environmental perception. The project ProFusion2 pushes the sensor data fusion for automotive applications in the field of driver assistance systems. ProFusion2 was created to enhance fusion techniques and algorithms beyond the current state-of-the-art. It is a horizontal subproject in the Integrated Project PReVENT (funded by the EC). The paper presents two approaches concerning the detection of vehicles in road environments. An early fusion and a multi level fusion processing strategy are described. The common framework for the representation of the environment model and the representation of perception results is introduced. The key feature of this framework is the storing and representation of all data involved in one perception memory in a common data structure and the holistic accessibility.","PeriodicalId":190903,"journal":{"name":"2007 IEEE Intelligent Vehicles Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2007.4290114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The fusion of data from different sensorial sources is today the most promising method to increase robustness and reliability of environmental perception. The project ProFusion2 pushes the sensor data fusion for automotive applications in the field of driver assistance systems. ProFusion2 was created to enhance fusion techniques and algorithms beyond the current state-of-the-art. It is a horizontal subproject in the Integrated Project PReVENT (funded by the EC). The paper presents two approaches concerning the detection of vehicles in road environments. An early fusion and a multi level fusion processing strategy are described. The common framework for the representation of the environment model and the representation of perception results is introduced. The key feature of this framework is the storing and representation of all data involved in one perception memory in a common data structure and the holistic accessibility.
可靠汽车安全系统的早期多级融合
融合来自不同感官来源的数据是目前最有希望提高环境感知鲁棒性和可靠性的方法。ProFusion2项目推动了传感器数据融合在驾驶辅助系统领域的汽车应用。ProFusion2的创建是为了增强融合技术和算法,超越当前最先进的技术。它是集成项目PReVENT(由欧共体资助)中的一个横向子项目。本文提出了道路环境中车辆检测的两种方法。描述了一种早期融合和多级融合处理策略。介绍了环境模型表示和感知结果表示的通用框架。该框架的主要特点是在一个通用的数据结构中存储和表示一个感知存储器中涉及的所有数据,并具有整体可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信