U. Scheunert, Philipp Lindner, E. Richter, T. Tatschke, Dominik Schestauber, E. Fuchs, G. Wanielik
{"title":"Early and Multi Level Fusion for Reliable Automotive Safety Systems","authors":"U. Scheunert, Philipp Lindner, E. Richter, T. Tatschke, Dominik Schestauber, E. Fuchs, G. Wanielik","doi":"10.1109/IVS.2007.4290114","DOIUrl":null,"url":null,"abstract":"The fusion of data from different sensorial sources is today the most promising method to increase robustness and reliability of environmental perception. The project ProFusion2 pushes the sensor data fusion for automotive applications in the field of driver assistance systems. ProFusion2 was created to enhance fusion techniques and algorithms beyond the current state-of-the-art. It is a horizontal subproject in the Integrated Project PReVENT (funded by the EC). The paper presents two approaches concerning the detection of vehicles in road environments. An early fusion and a multi level fusion processing strategy are described. The common framework for the representation of the environment model and the representation of perception results is introduced. The key feature of this framework is the storing and representation of all data involved in one perception memory in a common data structure and the holistic accessibility.","PeriodicalId":190903,"journal":{"name":"2007 IEEE Intelligent Vehicles Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2007.4290114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The fusion of data from different sensorial sources is today the most promising method to increase robustness and reliability of environmental perception. The project ProFusion2 pushes the sensor data fusion for automotive applications in the field of driver assistance systems. ProFusion2 was created to enhance fusion techniques and algorithms beyond the current state-of-the-art. It is a horizontal subproject in the Integrated Project PReVENT (funded by the EC). The paper presents two approaches concerning the detection of vehicles in road environments. An early fusion and a multi level fusion processing strategy are described. The common framework for the representation of the environment model and the representation of perception results is introduced. The key feature of this framework is the storing and representation of all data involved in one perception memory in a common data structure and the holistic accessibility.