High Performance Agent-Based Modeling to Study Realistic Contact Tracing Protocols

S. Hoops, Jiangzhuo Chen, Abhijin Adiga, B. Lewis, H. Mortveit, Hannah Baek, M. Wilson, D. Xie, S. Swarup, S. Venkatramanan, Justin Crow, Elena Diskin, S. Levine, Helen Tazelaar, Brooke Rossheim, C. Ghaemmaghami, Rebecca Early, C. Barrett, M. Marathe, C. Price
{"title":"High Performance Agent-Based Modeling to Study Realistic Contact Tracing Protocols","authors":"S. Hoops, Jiangzhuo Chen, Abhijin Adiga, B. Lewis, H. Mortveit, Hannah Baek, M. Wilson, D. Xie, S. Swarup, S. Venkatramanan, Justin Crow, Elena Diskin, S. Levine, Helen Tazelaar, Brooke Rossheim, C. Ghaemmaghami, Rebecca Early, C. Barrett, M. Marathe, C. Price","doi":"10.1109/WSC52266.2021.9715382","DOIUrl":null,"url":null,"abstract":"Contact tracing (CT) is an important and effective intervention strategy for controlling an epidemic. Its role becomes critical when pharmaceutical interventions are unavailable. CT is resource intensive, and multiple protocols are possible, therefore the ability to evaluate strategies is important. We describe a high-performance, agent-based simulation model for studying CT during an ongoing pandemic. This work was motivated by the COVID-19 pandemic, however framework and design are generic and can be applied in other settings. This work extends our HPC-oriented ABM framework EpiHiper to efficiently represent contact tracing. The main contributions are: (i) Extension of EpiHiper to represent realistic CT processes. (ii) Realistic case study using the VA network motivated by our collaboration with the Virginia Department of Health.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Contact tracing (CT) is an important and effective intervention strategy for controlling an epidemic. Its role becomes critical when pharmaceutical interventions are unavailable. CT is resource intensive, and multiple protocols are possible, therefore the ability to evaluate strategies is important. We describe a high-performance, agent-based simulation model for studying CT during an ongoing pandemic. This work was motivated by the COVID-19 pandemic, however framework and design are generic and can be applied in other settings. This work extends our HPC-oriented ABM framework EpiHiper to efficiently represent contact tracing. The main contributions are: (i) Extension of EpiHiper to represent realistic CT processes. (ii) Realistic case study using the VA network motivated by our collaboration with the Virginia Department of Health.
基于高性能智能体建模研究现实接触跟踪协议
接触者追踪是控制疫情的一项重要而有效的干预策略。当无法获得药物干预措施时,它的作用变得至关重要。CT是资源密集型的,可能有多种方案,因此评估策略的能力很重要。我们描述了一种高性能、基于主体的模拟模型,用于研究正在进行的大流行期间的CT。这项工作的动机是COVID-19大流行,但框架和设计是通用的,可以应用于其他环境。这项工作扩展了我们面向hpc的ABM框架EpiHiper,以有效地表示接触跟踪。主要贡献有:(i)扩展了EpiHiper,以表示真实的CT过程。(二)在我们与弗吉尼亚州卫生部合作的推动下,利用弗吉尼亚州网络进行现实案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信