Using Algorithms for the Study of Intelligent Interfaces for Solving Pattern Recognition Tasks

Igor Zemtsov, Ol'ga Ivanova
{"title":"Using Algorithms for the Study of Intelligent Interfaces for Solving Pattern Recognition Tasks","authors":"Igor Zemtsov, Ol'ga Ivanova","doi":"10.1109/SUMMA48161.2019.8947622","DOIUrl":null,"url":null,"abstract":"Today, there are many algorithms for tracking pattern recognition on a digital image. These are the cascading classifiers of Viola and Jones, the generalized Hough transform, the Kapoor-Wynn method, and others. However, algorithms for tracking and pattern recognition with high reliability and stability indicators require significant time-consuming execution of the algorithm and the recognition of new patterns. In this article, two algorithms will be investigated using the intelligent interface as an example: an image recognition algorithm that recognizes a physical object in the camera's vision and an operator's hand gesture tracking algorithm.","PeriodicalId":163496,"journal":{"name":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUMMA48161.2019.8947622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today, there are many algorithms for tracking pattern recognition on a digital image. These are the cascading classifiers of Viola and Jones, the generalized Hough transform, the Kapoor-Wynn method, and others. However, algorithms for tracking and pattern recognition with high reliability and stability indicators require significant time-consuming execution of the algorithm and the recognition of new patterns. In this article, two algorithms will be investigated using the intelligent interface as an example: an image recognition algorithm that recognizes a physical object in the camera's vision and an operator's hand gesture tracking algorithm.
应用算法研究解决模式识别任务的智能接口
目前,有许多算法用于跟踪数字图像上的模式识别。这些是Viola和Jones的级联分类器、广义霍夫变换、Kapoor-Wynn方法等。然而,具有高可靠性和稳定性指标的跟踪和模式识别算法需要大量耗时的算法执行和新模式的识别。在本文中,将以智能界面为例研究两种算法:识别相机视觉中的物理对象的图像识别算法和操作员的手势跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信