Classification of Pulse Repetition Interval Modulations Using Neural Networks

H. P. K. Nguyen, H. Nguyen
{"title":"Classification of Pulse Repetition Interval Modulations Using Neural Networks","authors":"H. P. K. Nguyen, H. Nguyen","doi":"10.1109/SSCI.2018.8628913","DOIUrl":null,"url":null,"abstract":"Repetition Intervals (PRI)-the distances between consecutive times of arrival of radar pulses-are important characteristics that help identify the emitting source. The recognition of various PRI modulation types under the assumption of missing and spurious pulses is a classical yet challenging problem. We introduce in this paper a novel learning-based method for the classification of 7 popular PRI modulations. In this classifier, a set of 6 features, extracted from the preprocessed PRI sequences, are fed into a simple feed-forward neural network. The proposed scheme, while computationally fast, outperforms existing methods by a significant margin on a variety of PRI parameters and under different levels of pulse miss-detections and false alarms.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Repetition Intervals (PRI)-the distances between consecutive times of arrival of radar pulses-are important characteristics that help identify the emitting source. The recognition of various PRI modulation types under the assumption of missing and spurious pulses is a classical yet challenging problem. We introduce in this paper a novel learning-based method for the classification of 7 popular PRI modulations. In this classifier, a set of 6 features, extracted from the preprocessed PRI sequences, are fed into a simple feed-forward neural network. The proposed scheme, while computationally fast, outperforms existing methods by a significant margin on a variety of PRI parameters and under different levels of pulse miss-detections and false alarms.
脉冲重复间隔调制的神经网络分类
重复间隔(PRI)——雷达脉冲连续到达时间之间的距离——是帮助识别发射源的重要特征。在缺失脉冲和伪脉冲假设下对各种PRI调制类型的识别是一个经典但又具有挑战性的问题。本文介绍了一种新的基于学习的方法对7种常用的PRI调制进行分类。在该分类器中,从预处理的PRI序列中提取一组6个特征,并将其输入到一个简单的前馈神经网络中。该方案虽然计算速度快,但在各种PRI参数和不同级别的脉冲漏检和虚警情况下,其性能明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信