Covariant Ergodic Quantum Markov Semigroups via Systems of Imprimitivity

R. Balu
{"title":"Covariant Ergodic Quantum Markov Semigroups via Systems of Imprimitivity","authors":"R. Balu","doi":"10.31390/josa.2.4.07","DOIUrl":null,"url":null,"abstract":"We construct relativistic quantumMarkov semigroups from covariant completely positive maps. We proceed by generalizing a step in Stinespring’s dilation to a general system of imprimitivity and basing it on Poincarè group. The resulting noise channels are relativistically consistent and the method is applicable to any fundamental particle, though we demonstrate it for the case of light-like particles. The Krauss decomposition of the relativistically consistent completely positive identity preserving maps (our set up is in Heisenberg picture) enables us to construct the covariant quantum Markov semigroups that are uniformly continuous. We induce representations from the little groups to ensure the quantum Markov semigroups that are ergodic due to transitive systems imprimitivity.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"429 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct relativistic quantumMarkov semigroups from covariant completely positive maps. We proceed by generalizing a step in Stinespring’s dilation to a general system of imprimitivity and basing it on Poincarè group. The resulting noise channels are relativistically consistent and the method is applicable to any fundamental particle, though we demonstrate it for the case of light-like particles. The Krauss decomposition of the relativistically consistent completely positive identity preserving maps (our set up is in Heisenberg picture) enables us to construct the covariant quantum Markov semigroups that are uniformly continuous. We induce representations from the little groups to ensure the quantum Markov semigroups that are ergodic due to transitive systems imprimitivity.
非基系统中的协变遍历量子马尔可夫半群
从协变完全正映射构造相对论量子马尔可夫半群。我们将spring_expansion中的一个步骤推广到一个一般的非原性系统,并以Poincarè群为基础。由此产生的噪声通道是相对一致的,该方法适用于任何基本粒子,尽管我们对类光粒子的情况进行了证明。相对论一致的完全正恒等保持映射的克劳斯分解(我们的建立是在海森堡图中)使我们能够构造一致连续的协变量子马尔可夫半群。为了保证由于传递系统的非基性而具有遍历性的量子马尔可夫半群,我们从小群中引出了表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信