IMPLEMENTASI TEXT MINING UNTUK ANALISIS PREFERENSI MASYARAKAT TERHADAP TEMPAT WISATA DI INDONESIA

Yohanes Hans Kristian, K. R. Prilianti, Paulus Lucky Tirma Irawan
{"title":"IMPLEMENTASI TEXT MINING UNTUK ANALISIS PREFERENSI MASYARAKAT TERHADAP TEMPAT WISATA DI INDONESIA","authors":"Yohanes Hans Kristian, K. R. Prilianti, Paulus Lucky Tirma Irawan","doi":"10.21107/simantec.v7i2.6710","DOIUrl":null,"url":null,"abstract":"untuk meningkatkan daya tariknya. Untuk itu diperlukan informasi preferensi terkait suatu tempat wisata tertentu yang bisa didapat salah satunya dari media sosial Twitter menggunakan text mining . Pada penelitian ini telah dibuat aplikasi untuk melakukan analisis preferensi masyarakat terhadap tempat wisata di Indonesia dengan menerapkan text mining menggunakan analisis sentimen dan analisis faktor dengan studi kasus candi Borobudur dan candi Prambanan. Algoritma Naive Bayes Classifier (NBC) digunakan pada analisis sentimen, dan metode Principal Component Analysis (PCA) digunakan pada analisis faktor. Dari penelitian yang sudah dilakukan didapatkan hasil akurasi klasifikai sebesar 100% untuk topik candi Borobudur, 80.59% untuk topik candi Prambanan, dan 90.48% untuk akurasi rata-rata menggunakan ABSTRACT Tourism is one of Indonesia's leading sectors that needs to be maintained and developed to increase its attractiveness. For this reason, public preference information regarding a particular tourist spot that can be obtained is one of them from Twitter social media using text mining. In this study an application has been made to analyze people's preferences for tourist attractions in Indonesia by applying text mining using sentiment analysis and factor analysis with a case study of Borobudur temple and Prambanan temple. The Naive Bayes Classifier (NBC) algorithm is used in sentiment analysis, and the Principal Component Analysis (PCA) method is used in factor analysis. From the research that has been done, the results of classification are 100% for the topics of Borobudur temple, 80.59% for the topic of Prambanan temple, and 90.48% for the average accuracy using the NBC algorithm. The PCA method produced 10 positive factors and 7 negative factors for the topic of Borobudur temple, while for the topic of Prambanan temple there were 8 positive factors and 3 negative factors. All factors formed have been validated and interpreted by experts. It can be concluded if the application made can be used to find out information on people's preferences for tourist attractions in Indonesia.","PeriodicalId":143836,"journal":{"name":"Jurnal Simantec","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Simantec","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/simantec.v7i2.6710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

untuk meningkatkan daya tariknya. Untuk itu diperlukan informasi preferensi terkait suatu tempat wisata tertentu yang bisa didapat salah satunya dari media sosial Twitter menggunakan text mining . Pada penelitian ini telah dibuat aplikasi untuk melakukan analisis preferensi masyarakat terhadap tempat wisata di Indonesia dengan menerapkan text mining menggunakan analisis sentimen dan analisis faktor dengan studi kasus candi Borobudur dan candi Prambanan. Algoritma Naive Bayes Classifier (NBC) digunakan pada analisis sentimen, dan metode Principal Component Analysis (PCA) digunakan pada analisis faktor. Dari penelitian yang sudah dilakukan didapatkan hasil akurasi klasifikai sebesar 100% untuk topik candi Borobudur, 80.59% untuk topik candi Prambanan, dan 90.48% untuk akurasi rata-rata menggunakan ABSTRACT Tourism is one of Indonesia's leading sectors that needs to be maintained and developed to increase its attractiveness. For this reason, public preference information regarding a particular tourist spot that can be obtained is one of them from Twitter social media using text mining. In this study an application has been made to analyze people's preferences for tourist attractions in Indonesia by applying text mining using sentiment analysis and factor analysis with a case study of Borobudur temple and Prambanan temple. The Naive Bayes Classifier (NBC) algorithm is used in sentiment analysis, and the Principal Component Analysis (PCA) method is used in factor analysis. From the research that has been done, the results of classification are 100% for the topics of Borobudur temple, 80.59% for the topic of Prambanan temple, and 90.48% for the average accuracy using the NBC algorithm. The PCA method produced 10 positive factors and 7 negative factors for the topic of Borobudur temple, while for the topic of Prambanan temple there were 8 positive factors and 3 negative factors. All factors formed have been validated and interpreted by experts. It can be concluded if the application made can be used to find out information on people's preferences for tourist attractions in Indonesia.
旨在分析人们对印尼旅游景点的偏好的文本挖掘实施
增加吸引力。这就需要一个特定旅游景点的偏好信息,其中一个可以从Twitter的社交媒体上获得文本挖掘。本研究创建了一个应用程序,通过使用情绪分析和因子分析分析分析婆罗浮屠寺庙和Prambanan寺庙来分析印尼的文化偏好。Naive Bayes Classifier算法用于情绪分析,原则分析方法(PCA)用于因子分析。从已经进行的研究中,可以获得100%的关于婆罗浮屠寺主题的分类精确度,普拉巴南寺主题的80%。59%的命中率,以及90% 48%的平均准确率出于这个原因,公众参考资料指出了一个部分景点,可以从Twitter社交媒体的文本挖掘中找到。在这项研究中,一项应用程序已经被用来分析印尼游客的偏好,使用上下文分析和事实分析,研究婆罗浮屠寺和Prambanan寺庙。Naive Bayes Classifier (NBC)的算法用于情感分析,而原则综合分析(PCA)方法分析则用于事实分析。根据已进行的研究,婆罗浮屠寺的题目的推荐率为100%,普拉班坦的题目为80.59%,平均评分为90.48%,使用NBC算法。关于婆罗浮屠寺的主题是10个积极的方法和7个消极的因素,而普拉巴南寺庙的主题是8个积极的因素和3个消极的因素。所有的因素都得到了专家的验证和解释。如果创建的应用程序可以用来在印尼的旅游景点上查找人们喜欢的信息,这可能是可以确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信