Retinal vessel segmentation using Gabor filter and artificial neural network

M. Nandy, M. Banerjee
{"title":"Retinal vessel segmentation using Gabor filter and artificial neural network","authors":"M. Nandy, M. Banerjee","doi":"10.1109/EAIT.2012.6407885","DOIUrl":null,"url":null,"abstract":"This paper demonstrates an automated segmentation scheme of retinal vasculature using Gabor filter bank, which is optimized on the basis of entropy. Different distributions of filter responses are encoded into features and the vasculature of normal and abnormal retina are segmented by artificial neural network(ANN). The training set of labeled pixels is obtained from the ground truth images of DRIVE database. The Receiver Operating Characteristics (ROC) in both abnormal and normal cases shows 96.16% accuracy.","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper demonstrates an automated segmentation scheme of retinal vasculature using Gabor filter bank, which is optimized on the basis of entropy. Different distributions of filter responses are encoded into features and the vasculature of normal and abnormal retina are segmented by artificial neural network(ANN). The training set of labeled pixels is obtained from the ground truth images of DRIVE database. The Receiver Operating Characteristics (ROC) in both abnormal and normal cases shows 96.16% accuracy.
基于Gabor滤波和人工神经网络的视网膜血管分割
提出了一种基于熵优化的Gabor滤波器组自动分割视网膜血管的方案。将滤波响应的不同分布编码为特征,利用人工神经网络对正常视网膜和异常视网膜的脉管系统进行分割。标记像素的训练集从DRIVE数据库的地面真值图像中获得。受试者工作特征(ROC)在异常和正常情况下的准确率均为96.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信