{"title":"Analysis of variance (ANOVA).","authors":"D. Quicke, B. A. Butcher, R. K. Welton","doi":"10.1079/9781789245349.0013a","DOIUrl":null,"url":null,"abstract":"Abstract\n Analysis of variance is used to analyze the differences between group means in a sample, when the response variable is numeric (real numbers) and the explanatory variable(s) are all categorical. Each explanatory variable may have two or more factor levels, but if there is only one explanatory variable and it has only two factor levels, one should use Student's t-test and the result will be identical. Basically an ANOVA fits an intercept and slopes for one or more of the categorical explanatory variables. ANOVA is usually performed using the linear model function lm, or the more specific function aov, but there is a special function oneway.test when there is only a single explanatory variable. For a one-way ANOVA the non-parametric equivalent (if variance assumptions are not met) is the kruskal.test.","PeriodicalId":167700,"journal":{"name":"Practical R for biologists: an introduction","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical R for biologists: an introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789245349.0013a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract
Analysis of variance is used to analyze the differences between group means in a sample, when the response variable is numeric (real numbers) and the explanatory variable(s) are all categorical. Each explanatory variable may have two or more factor levels, but if there is only one explanatory variable and it has only two factor levels, one should use Student's t-test and the result will be identical. Basically an ANOVA fits an intercept and slopes for one or more of the categorical explanatory variables. ANOVA is usually performed using the linear model function lm, or the more specific function aov, but there is a special function oneway.test when there is only a single explanatory variable. For a one-way ANOVA the non-parametric equivalent (if variance assumptions are not met) is the kruskal.test.