{"title":"The Monotone Complexity of k-clique on Random Graphs","authors":"Benjamin Rossman","doi":"10.1137/110839059","DOIUrl":null,"url":null,"abstract":"It is widely suspected that Erd\\H{o}s-R\\'enyi random graphs are a source of hard instances for clique problems. Giving further evidence for this belief, we prove the first average-case hardness result for the $k$-clique problem on monotone circuits. Specifically, we show that no monotone circuit of size $O(n^{k/4})$ solves the $k$-clique problem with high probability on $\\ER(n,p)$ for two sufficiently far-apart threshold functions $p(n)$ (for instance $n^{-2/(k-1)}$ and $2n^{-2/(k-1)}$). Moreover, the exponent $k/4$ in this result is tight up to an additive constant. One technical contribution of this paper is the introduction of {\\em quasi-sunflowers}, a new relaxation of sunflowers in which petals may overlap slightly on average. A ``quasi-sunflower lemma'' (\\`a la the Erd\\H{o}s-Rado sunflower lemma) leads to our novel lower bounds within Razborov's method of approximations.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/110839059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
It is widely suspected that Erd\H{o}s-R\'enyi random graphs are a source of hard instances for clique problems. Giving further evidence for this belief, we prove the first average-case hardness result for the $k$-clique problem on monotone circuits. Specifically, we show that no monotone circuit of size $O(n^{k/4})$ solves the $k$-clique problem with high probability on $\ER(n,p)$ for two sufficiently far-apart threshold functions $p(n)$ (for instance $n^{-2/(k-1)}$ and $2n^{-2/(k-1)}$). Moreover, the exponent $k/4$ in this result is tight up to an additive constant. One technical contribution of this paper is the introduction of {\em quasi-sunflowers}, a new relaxation of sunflowers in which petals may overlap slightly on average. A ``quasi-sunflower lemma'' (\`a la the Erd\H{o}s-Rado sunflower lemma) leads to our novel lower bounds within Razborov's method of approximations.