{"title":"DR-SNUCA: An energy-scalable dynamically partitioned cache","authors":"Anshuman Gupta, J. Sampson, M. Taylor","doi":"10.1109/ICCD.2013.6657096","DOIUrl":null,"url":null,"abstract":"Multicore processors have become ubiquitous across many domains, such as datacenters and smartphones. As the number of processing elements increases within these processors, so does the pressure to share the critical on-chip cache resources, but this must be done energy-efficiently and without sacrificing resource guarantees. We propose a scalable dynamic cache-partitioning scheme, DR-SNUCA, which provides an energy-efficient way to reduce resource interference over caches shared among many processing elements. Our results show that DR-SNUCA reduces system energy consumption by 16.3% compared to associatively partitioned caches, such as DNUCA.","PeriodicalId":398811,"journal":{"name":"2013 IEEE 31st International Conference on Computer Design (ICCD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2013.6657096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Multicore processors have become ubiquitous across many domains, such as datacenters and smartphones. As the number of processing elements increases within these processors, so does the pressure to share the critical on-chip cache resources, but this must be done energy-efficiently and without sacrificing resource guarantees. We propose a scalable dynamic cache-partitioning scheme, DR-SNUCA, which provides an energy-efficient way to reduce resource interference over caches shared among many processing elements. Our results show that DR-SNUCA reduces system energy consumption by 16.3% compared to associatively partitioned caches, such as DNUCA.