{"title":"Towards human translations guided language discovery for ASR systems","authors":"Sebastian Stüker, A. Waibel","doi":"10.21437/Interspeech.2009-765","DOIUrl":null,"url":null,"abstract":"ABSTRACTNatural language processing systems, e.g for AutomaticSpeech Recognition (ASR) or Machine Translation (MT),havebeenstudiedonlyforafractionoftheapprox.7000lan-guagesthatexistintoday’sworld,themajorityofwhichhaveonlycomparativelyfewspeakersandfewresources.Thetra-ditionalapproachofcollectingandannotatingthenecessarytrainingdataisduetoeconomicconstraintsnotfeasibleformostofthem. AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New,efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld. Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained.Index Terms — Automatic Speech Recognition, Lan-guage Discovery, Machine Translation, Under-ResourcedLanguages1. INTRODUCTION1.1. The Traditional Way to Acquire Training DataTraining large vocabulary continuous speech recognition(LVCSR) systems requires a number resources in the tar-getedlanguage. Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels,apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday,thecurrenteditionofEthnologue[1]lists7,299.Sofar,automaticspeechrecognition (ASR) systems and machine translation (MT)","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2009-765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
ABSTRACTNatural language processing systems, e.g for AutomaticSpeech Recognition (ASR) or Machine Translation (MT),havebeenstudiedonlyforafractionoftheapprox.7000lan-guagesthatexistintoday’sworld,themajorityofwhichhaveonlycomparativelyfewspeakersandfewresources.Thetra-ditionalapproachofcollectingandannotatingthenecessarytrainingdataisduetoeconomicconstraintsnotfeasibleformostofthem. AtthesametimeitisofvitalinteresttohaveNLPsystemsaddresspracticallyalllanguagesintheworld.New,efficientwaysofgatheringtheneededtrainingmaterialhavetobefound.InthispaperweproposeanewtechniqueofcollectingsuchdatabyexploitingtheknowledgegainedfromHumansimultaneoustranslationsthathappenfrequentlyintherealworld. Toshowthefeasibilityofourapproachwepresentfirstexperimentstowardsconstructingapronuncia-tiondictionaryfromthedatagained.Index Terms — Automatic Speech Recognition, Lan-guage Discovery, Machine Translation, Under-ResourcedLanguages1. INTRODUCTION1.1. The Traditional Way to Acquire Training DataTraining large vocabulary continuous speech recognition(LVCSR) systems requires a number resources in the tar-getedlanguage. Fortrainingtheacousticmodelofarecog-nitionsystemlargeamountsoftranscribedaudiorecordingsofspeechareneeded.Thetrainingofthelanguagemodelre-quireslargeamountsofwrittentextinthetargetedlanguage.Whenusingphonemebasedacousticmodels,apronunciationdictionaryisneededthatmapsthewrittenrepresentationofawordtothesequenceofitsphonemeswhenbeingspoken.Approximately7,000languagesexisttoday,thecurrenteditionofEthnologue[1]lists7,299.Sofar,automaticspeechrecognition (ASR) systems and machine translation (MT)