S. Tabik, P. Mimica, O. Plata, E. Zapata, L. F. Romero
{"title":"Spectral evolution simulation on leading multi-socket, multicore platforms","authors":"S. Tabik, P. Mimica, O. Plata, E. Zapata, L. F. Romero","doi":"10.1109/HIPC.2011.6152730","DOIUrl":null,"url":null,"abstract":"Spectral evolution simulations based on the observed Very Long Baseline Interferometry (VLBI) radio-maps are of paramount importance to understand the nature of extragalactic objects in astrophysics. This work analyzes the performance and scaling of a spectral evolution algorithm on three leading multi-socket, multi-core architectures. We evaluate three parallel models with different levels of data-sharing: a sharing approach, a privatizing approach and a hybrid approach. Our experiments show that the data-privatizing model is reasonably efficient on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless algorithmic and scheduling optimizations, sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing gives the best scalability over all the considered multi-socket, multi-core systems.","PeriodicalId":122468,"journal":{"name":"2011 18th International Conference on High Performance Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th International Conference on High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIPC.2011.6152730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral evolution simulations based on the observed Very Long Baseline Interferometry (VLBI) radio-maps are of paramount importance to understand the nature of extragalactic objects in astrophysics. This work analyzes the performance and scaling of a spectral evolution algorithm on three leading multi-socket, multi-core architectures. We evaluate three parallel models with different levels of data-sharing: a sharing approach, a privatizing approach and a hybrid approach. Our experiments show that the data-privatizing model is reasonably efficient on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless algorithmic and scheduling optimizations, sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing gives the best scalability over all the considered multi-socket, multi-core systems.