{"title":"Molecular imprinted photonic crystal for sensing of biomolecules","authors":"Wei Chen, Zi-hui Meng, Min Xue, K. Shea","doi":"10.1515/molim-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract Molecularly imprinted polymers (MIPs) are highly cross-linked polymers with high binding capacity and selectivity to the target molecules. MIPs become increasingly important because of the potential applications in drug delivery, purification and separation. In spite of the tremendous progress that has been made in the molecular imprinting field, many challenges remain to be addressed, especially in transforming the binding event into a detectable optical signal. The combination of photonic crystal and molecular imprinting technique is becoming a popular research idea. Compared to the conventional MIPs, the molecularly imprinted photonic crystal sensors (MIPCB) have the advantage of directly convert the molecule recognition process into optical signal. This review comprehensively summarizes various MIPCB, including the principle of molecular imprinted photonic crystal sensors, recent development, some challenges and effective strategies for MIPCB.","PeriodicalId":155658,"journal":{"name":"Molecular Imprinting","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imprinting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/molim-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Abstract Molecularly imprinted polymers (MIPs) are highly cross-linked polymers with high binding capacity and selectivity to the target molecules. MIPs become increasingly important because of the potential applications in drug delivery, purification and separation. In spite of the tremendous progress that has been made in the molecular imprinting field, many challenges remain to be addressed, especially in transforming the binding event into a detectable optical signal. The combination of photonic crystal and molecular imprinting technique is becoming a popular research idea. Compared to the conventional MIPs, the molecularly imprinted photonic crystal sensors (MIPCB) have the advantage of directly convert the molecule recognition process into optical signal. This review comprehensively summarizes various MIPCB, including the principle of molecular imprinted photonic crystal sensors, recent development, some challenges and effective strategies for MIPCB.