A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion

Xiaoqian Song, Maokun Li, A. Abubakar
{"title":"A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion","authors":"Xiaoqian Song, Maokun Li, A. Abubakar","doi":"10.1109/NEMO49486.2020.9343382","DOIUrl":null,"url":null,"abstract":"In this paper, we study parameter reconstruction from the perspective of probability, which is friendly to introduce prior information about the target region. The unknown contrast is assumed to follow Gaussian mixture model (GMM) and variational inference machinery is applied to realize the inversion. To decouple the contrast of different pixels, we consider the approximate posterior distribution from the perspective of optimization, and the inversion can be formulated as optimizing the combination of data misfit and prior information that works as the regularization.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study parameter reconstruction from the perspective of probability, which is friendly to introduce prior information about the target region. The unknown contrast is assumed to follow Gaussian mixture model (GMM) and variational inference machinery is applied to realize the inversion. To decouple the contrast of different pixels, we consider the approximate posterior distribution from the perspective of optimization, and the inversion can be formulated as optimizing the combination of data misfit and prior information that works as the regularization.
基于高斯混合模型的电磁数据反演正则化方案
本文从概率的角度研究参数重构,便于引入目标区域的先验信息。假设未知对比遵循高斯混合模型(GMM),采用变分推理机制实现反演。为了解耦不同像素的对比度,我们从优化的角度考虑近似后验分布,反演可以表示为优化数据失拟和先验信息的组合,作为正则化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信